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Problem 1: Complex Numbers

Consider the two complex numbers v1 = 1 + i and v2 = 1− 2i where i2 = −1.

a. Calculate the complex numbers z1 = v1+v2 and z2 = v1−v∗2 where z∗ denotes the complex
conjugate of the complex number z.

Solution: z1 = v1 + v2 = (1 + i) + (1− 2i) = 2− i. In order to calculate z2, we first have to
conjugate the number v2. Recall that for a complex number w = a+bi, its complex conjugate
is w∗ = a− bi. It’s easy then to see that v∗2 = 1 + 2i and thus z2 = −i
b. Let w = 1− i. Calculate wz1 and (z2w)

∗.

Solution: For the first multiplication we have:

wz1 = (1− i)(2− i) = 2− i− 2i− 1 = 1− 3i

since i2 = −1. For the second expression, we should first do the multiplication and then
calculate the conjugate of the product. So

z2w = −i(1− i) = −i− 1 = −1− i

and then if we conjugate:
(z2w)

∗ = −1 + i

c. Calculate the norm of v1 and v2.

Solution: The norm of complex number w = a+ bi is defined as

|w| =
√
a2 + b2

In our case, for v1:
|v1| =

√
12 + 12 =

√
2

and for v2:
|v2| =

√
12 + (−2)2 =

√
5

Problem 2: Inner-product and orthonormal bases

a. Consider the quantum states |R⟩ = 1√
2

(
1
i

)
, |L⟩ = 1√

2

(
1
−i

)
,

1. Write ⟨R| and ⟨L| in vector notation.

2. Prove that both |R⟩ and |L⟩ are normalized, i.e.
√
⟨R|R⟩ =

√
⟨L|L⟩ = 1

3. Are |R⟩ and |L⟩ orthogonal?
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4. Show that |R⟩ and |L⟩ satisfy all the conditions of an orthonormal basis of H = C2.

Solution:

Let a vector |ψ⟩ in the Dirac “ket” notation. If |ψ⟩ =

(
a
b

)
then, the conjugate transpose

vector, denoted ⟨ψ| and called a “bra” is defined as ⟨ψ| = (|ψ⟩T )∗ = |ψ⟩† =
(
a∗ b∗

)
Thus,

⟨R| = 1√
2

(
1− i

)
and

⟨L| = 1√
2

(
1 i

)
We will prove that both |R⟩, |L⟩ are normalised.

⟨R|R⟩ = 1√
2

(
1 −i

) 1√
2

(
1
i

)
=

1

2
(1 + 1) = 1

and so: √
⟨R|R⟩ = 1

Same for |L⟩:

⟨L|L⟩ = 1√
2

(
1 i

) 1√
2

(
1
−i

)
=

1

2
(1 + 1) = 1

and so: √
⟨L|L⟩ = 1

Two vectors |R⟩, |L⟩ are orthogonal if their inner product is 0, i.e. ⟨R|L⟩ = 0. We have,

⟨R|L⟩ = 1√
2

(
1 −i

) 1√
2

(
1
−i

)
=

1

2
(1− 1) = 0

So |R⟩ and |L⟩ are orthogonal.

Finally, for the last question, in order for |R⟩ and |L⟩ to satisfy all the conditions of an
orthonormal basis, they must satisfy:

• Be orthogonal, which is true as we proved before.

• Be normalized to one, which we proved to be.

• The number of basis elements must be the same with the dimension of the vector space
which is true as well.
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Problem 3: Matrices and operators.

a.

1. One of the most important linear operators in quantum computing is the Hadamard
operator defined as:

H =
1√
2

(
1 1
1 −1

)

Find what is the action of the operator on the vector |v⟩ = 1√
2

(
1
i

)
.

Solution. We want to calculate H |v⟩. We have:

H |v⟩ = 1√
2

(
1 1
1 −1

)
1√
2

(
1
i

)
=

1

2

(
1 + i
1− i

)
2. Consider two of the Pauli matrices:

Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
Calculate XZ and ZX. Compare the two calculations.

Solution: We start by computing XZ. We have:

XZ =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
We continue by computing ZX. We have:

ZX =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
If we observe the two multiplications we see that ZX = −XZ. This is a well-known
property of the Pauli matrices as all of them anticommute. For our case this translates
to {X,Z} = XZ + ZX = 0.

b.

1. Show that for finite-size matrices (A†)† = A always holds.

Solution. Since A†
ij = A∗

ji then (A†
ij)

† = (A∗
ji)

† = (A∗
ij)

∗ = Aij and thus:

(A†)† = A for every operator A
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2. Prove that two general matrices A and B we have (AB)† = B†A†.

Solution: The definition of an adjoint operator M is:

(|v⟩ ,M |w⟩) = (M † |v⟩ , |w⟩)

We can now write
(|v⟩ , AB |u⟩) = (|v⟩ , A(B |u⟩)),

where setting |w⟩ = B|u⟩ andM = A in the definition of adjoint operator above, allows
us to write

(|v⟩ , A(B |u⟩)) = (A† |v⟩ , B |u⟩).
Using again the definition of the adjoint operator, now with B, we obtain

(A† |v⟩ , B |u⟩) = (B†A† |v⟩ , |u⟩)

and
(|v⟩ , AB |u⟩) = ((AB)† |v⟩ , |u⟩)
=⇒ (AB)† = B†A†

3. Prove that the Hadamard operator defined above is a self-adjoint operator.

Solution. As we already mentioned, the elements of the adjoint Hadamard operator
H† are related to those of the Hadamard operator H as H†

ij = H∗
ji. It is clear then that

these two matrices are identical and as such the Hadamard operator is a self-adjoint
operator.

c. Compute the eigenvalues and eigenvectors of X and Z.

Solution. We will work with the matrix X. The eigenvectors |v⟩ of the matrix X are such
that when X acts on the vectors |v⟩ they are only scaled by a factor λ (which is called the
eigenvalue of the matrix), i.e. X |v⟩ = λ |v⟩
The eigenvalues λ of the matrix X must satisfy:

det(X − λI) = 0 =⇒
∣∣∣∣(−λ 1

1 −λ

)∣∣∣∣ = 0

=⇒ λ2 − 1 = 0 =⇒ λ = ±1

Thus, we found that the eigenvalues of X are ±1. In order to find the eigenvectors, we replace

the eigenvalues in the equation X |v⟩ = λ |v⟩. Let’s also write the vectors |v⟩ as |v⟩ =
(
a
b

)
.

For λ = 1 we have: (
0 1
1 0

)(
a
b

)
=

(
a
b

)
=⇒

(
b
a

)
=

(
a
b

)
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We can then conclude that the eigenvector corresponding to λ = 1 eigenvalue is |v⟩ =
(
a
a

)
.

If we impose the condition that the vector is normalized || |v⟩ || = 1 then we get a = 1√
2
. So

the eigenvector becomes |v⟩ = 1√
2

(
1
1

)
By working in the same manner for the second eigenvalue (λ = −1) it is easy to see that

the second eigenvector is |u⟩ = 1√
2

(
1
−1

)
. In the quantum computing literature you will find

that these two vectors are usually denoted as |+⟩ and |−⟩.
It is trivial to see that for Z the eigenvectors are the states of the computational basis |0⟩
and |1⟩ with eigenvalues 1 and −1 respectively.

Optional: More complex numbers

a. Use the Euler equation, i.e. eiθ = cos θ + i sin θ, to calculate eiπ and e2iπ/4.

Solution: For the first case, θ = π and thus:

eiπ = cosπ + i sin π = −1 + i0 = −1

For the second case, θ = 2π/4 = π/2

ei2π/4 = cos(π/2) + i sin(π/2) = 0 + i = i

b. Let z = 1√
2
− 1√

2
i. First calculate |z| and then use the Euler equation to obtain ϕ so that

z = |z|eiϕ.
Solution: As mentioned in question c. the norm of a complex number w = a+ bi is defined
as:

|w| =
√
a2 + b2

For z = 1√
2
− 1√

2
i:

|z| =

√(
1√
2

)2

+

(
− 1√

2

)2

=

√
1

2
+

1

2
= 1

So we need to find the angle θ so that z = |z|eiϕ = eiϕ (since |z| = 1). Using the Euler
equation:

1√
2
− 1√

2
i = cosϕ+ i sinϕ(

1√
2
− cosϕ

)
−

(
1√
2
+ sinϕ

)
i = 0

5



Raul Garcia-Patron
Jakub Adamski Tutorial 0

IQC 2024-25
September 23, 2024

For a complex number w = a + bi to be equal to zero, it must have both its imaginary and
real part equal to zero. First, for the real part:

cosϕ =
1√
2

and for the imaginary part:

sinϕ = − 1√
2

Thus ϕ = 7π/4 and z = ei7π/4
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