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Problem 1: Quantum Operations

The Hadamard gate plays a very prominent role in quantum computation:

H =
1√
2

(
1 1
1 −1

)
a. Prove that H is unitary, i.e. that it satisfies HH† = H†H = I.

Solution: In order to prove that a matrix U is unitary, it must satisfy UU † = U †U = I.

First, we have to calculate the adjoint of the Hadamard operator. Recall that the matrix
elements of the adjoint operator are related to that of the operator as H†

ij = H∗
ji. Thus:

H† =
1√
2

(
1 1
1 −1

)
So we can see that H† = H. In order for H to be unitary then the following must hold:

H†H = HH† = I

We have:

HH† = H2 =
1√
2

(
1 1
1 −1

)
1√
2

(
1 1
1 −1

)
=

1

2

(
2 0
0 2

)
= I

and thus H†H = HH† = I

b. Prove that H is its own inverse by showing H2 = I where I is the identity operator.

Solution: This is a corollary of the previous result.

c. Calculate the action of the operator on the vectors:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
, |+⟩ = 1√

2

(
1
1

)
, |−⟩ = 1√

2

(
1
−1

)

Solution: We will show what is the action of the Hadamard on the computational basis
vector |0⟩ and on the vector |+⟩.

H |0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
= |+⟩

We can see how H acts on the |+⟩ by doing the matrix multiplication, but we can think of
a more “clever” way. We proved on question b. that H2 = I. So,

H |+⟩ = H(H |0⟩) = H2 |0⟩ = |0⟩
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You can work in the same way with the other two examples and prove that H |1⟩ = |−⟩ and
that H |−⟩ = |1⟩.
Extra information: H† = H makes Hadamard a Hermitian operator and so H†H = HH†.
The operators that satisfy AA† = A†A are called normal operators.

Problem 2: Pauli matrices

Consider the four Pauli matrices:

I, Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
.

a. Prove that for each Pauli matrix σi we have σ2
i = I and σ†

i = σi.

Solution: We’ll only make the proof for the Y Pauli matrix, but you should do the exact
calculations on the rest. We have:

Y 2 = Y Y =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= I

We will also prove that Y satisfies Y † = Y (i.e., is Hermitian):

Y † =

[(
0 −i
i 0

)T
]∗

=

[(
0 i
−i 0

)]∗
=

(
0 −i
i 0

)
= Y

b. Show that the Pauli matrices are unitary matrices.

Solution: We proved that for all Pauli matrices σ†
i = σi and that σ2

i = I. Clearly then,
σ2
i = σiσi = σ†

iσi = σiσ
†
i = I.

c. Show that Y = iXZ.

Solution: We have:

iXZ = i

(
0 1
1 0

)(
1 0
0 −1

)
= i

(
0 −1
1 0

)
=

(
0 −i
i 0

)
= Y
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d. Show that HXH = Z and HZH = X.

Solution: First, we will prove that HXH = Z. We have:

HXH =
1√
2

(
1 1
1 −1

)(
0 1
1 0

)
1√
2

(
1 1
1 −1

)
=

1

2

(
1 1
1 −1

)(
1 −1
1 1

)
=

1

2

(
2 0
0 −2

)
= Z

We can work in the exact same way for HZH = X or we can prove it differently. We
proved that HXH = Z. We do a left and right multiplication with H and so we have
HHXHH = HZH. But H2 = I and so X = HZH.

Problem 3: Measurement

Consider two quantum states |L⟩ and |R⟩ (eigenvalues of Pauli Y operator):

|R⟩ = 1√
2
(|0⟩+ i |1⟩)

|L⟩ = 1√
2
(|0⟩ − i |1⟩)

a. Consider the general quantum state:

|ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩

What are the probabilities of outcome |R⟩ and |L⟩ if we measure |ψ⟩.

Solution: We start with the probability of measuring the outcome |R⟩. If we measure the
state |ψ⟩, the probability of measuring |R⟩ is given by:

Pr[R] = |⟨R|ψ⟩|2 =
∣∣∣∣ 1√

2
(⟨0| − i ⟨1|)(ψ0 |0⟩+ ψ1 |1⟩)

∣∣∣∣2
=

1

2
|ψ0 − iψ1|2

where we used ⟨0|1⟩ = 0, since the vectors are orthogonal. Similarly, for the other probability
we have:

Pr[L] = |⟨L|ψ⟩|2 =
∣∣∣∣ 1√

2
(⟨0|+ i ⟨1|)(ψ0 |0⟩+ ψ1 |1⟩)

∣∣∣∣2
=

1

2
|ψ0 + iψ1|2
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b. Show that the states |L⟩ and |R⟩ can be generated from |0⟩ and |1⟩ using the following
circuit:

|0/1⟩ |R/L⟩H Rπ/2

where

Rθ =

(
1 0
0 eiθ

)
.

Solution:

Rπ/2H |0⟩ =
(
1 0
0 i

)
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
i

)
= |R⟩

Rπ/2H |1⟩ =
(
1 0
0 i

)
1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−i

)
= |L⟩

c. What circuit will allow implementing a measurement on the |L⟩ and |R⟩ basis if our
hardware only allows for measurement in the computational basis? Use H and Rθ gates.

Solution: In 1a) we saw that H is its own inverse, and it can be verified that R−π/4 is
inverse of Rπ/4 gate, i.e. R−π/4Rπ/4 = Rπ/4R−π/4 = I. Hence, the circuit

|R/L⟩ |0/1⟩R−π/2 H

can be used to map |R⟩ and |L⟩ into a computational basis where they can be distinguished
by the measurement.
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