Tutorial 1

Problem 1: Quantum Operations

The Hadamard gate plays a very prominent role in quantum computation:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

a. Prove that H is unitary, i.e. that it satisfies $HH^{\dagger} = H^{\dagger}H = I$.

Solution: In order to prove that a matrix U is unitary, it must satisfy $UU^{\dagger} = U^{\dagger}U = I$. First, we have to calculate the adjoint of the Hadamard operator. Recall that the matrix elements of the adjoint operator are related to that of the operator as $H_{ij}^{\dagger} = H_{ji}^{*}$. Thus:

$$H^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

So we can see that $H^{\dagger} = H$. In order for H to be unitary then the following must hold:

$$H^{\dagger}H = HH^{\dagger} = I$$

We have:

$$HH^{\dagger} = H^{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix} = I$$

and thus $H^{\dagger}H=HH^{\dagger}=I$

b. Prove that H is its own inverse by showing $H^2 = I$ where I is the identity operator.

Solution: This is a corollary of the previous result.

c. Calculate the action of the operator on the vectors:

$$|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad |+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix}, \quad |-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

Solution: We will show what is the action of the Hadamard on the computational basis vector $|0\rangle$ and on the vector $|+\rangle$.

$$H \left| 0 \right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \left| + \right\rangle$$

We can see how H acts on the $|+\rangle$ by doing the matrix multiplication, but we can think of a more "clever" way. We proved on question b. that $H^2 = I$. So,

$$H |+\rangle = H(H |0\rangle) = H^2 |0\rangle = |0\rangle$$

1

You can work in the same way with the other two examples and prove that $H|1\rangle = |-\rangle$ and that $H|-\rangle = |1\rangle$.

Extra information: $H^{\dagger} = H$ makes Hadamard a *Hermitian operator* and so $H^{\dagger}H = HH^{\dagger}$. The operators that satisfy $AA^{\dagger} = A^{\dagger}A$ are called *normal operators*.

Problem 2: Pauli matrices

Consider the four Pauli matrices:

$$I, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

a. Prove that for each Pauli matrix σ_i we have $\sigma_i^2 = I$ and $\sigma_i^{\dagger} = \sigma_i$.

Solution: We'll only make the proof for the Y Pauli matrix, but you should do the exact calculations on the rest. We have:

$$Y^{2} = YY = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

We will also prove that Y satisfies $Y^{\dagger} = Y$ (i.e., is Hermitian):

$$Y^{\dagger} = \left[\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}^T \right]^* = \left[\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \right]^* = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = Y$$

b. Show that the Pauli matrices are unitary matrices.

Solution: We proved that for all Pauli matrices $\sigma_i^{\dagger} = \sigma_i$ and that $\sigma_i^2 = I$. Clearly then, $\sigma_i^2 = \sigma_i \sigma_i = \sigma_i^{\dagger} \sigma_i = \sigma_i \sigma_i^{\dagger} = I$.

c. Show that Y = iXZ.

Solution: We have:

$$iXZ = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = Y$$

d. Show that HXH = Z and HZH = X.

Solution: First, we will prove that HXH = Z. We have:

$$HXH = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} = Z$$

We can work in the exact same way for HZH = X or we can prove it differently. We proved that HXH = Z. We do a left and right multiplication with H and so we have HHXHH = HZH. But $H^2 = I$ and so X = HZH.

Problem 3: Measurement

Consider two quantum states $|L\rangle$ and $|R\rangle$ (eigenvalues of Pauli Y operator):

$$|R\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i |1\rangle)$$
$$|L\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i |1\rangle)$$

a. Consider the general quantum state:

$$\left|\psi\right\rangle = \psi_{0}\left|0\right\rangle + \psi_{1}\left|1\right\rangle$$

What are the probabilities of outcome $|R\rangle$ and $|L\rangle$ if we measure $|\psi\rangle$.

Solution: We start with the probability of measuring the outcome $|R\rangle$. If we measure the state $|\psi\rangle$, the probability of measuring $|R\rangle$ is given by:

$$Pr[R] = |\langle R|\psi\rangle|^{2} = \left|\frac{1}{\sqrt{2}}(\langle 0| - i\langle 1|)(\psi_{0}|0\rangle + \psi_{1}|1\rangle)\right|^{2}$$
$$= \frac{1}{2}|\psi_{0} - i\psi_{1}|^{2}$$

where we used $\langle 0|1\rangle = 0$, since the vectors are orthogonal. Similarly, for the other probability we have:

$$Pr[L] = |\langle L|\psi\rangle|^{2} = \left|\frac{1}{\sqrt{2}}(\langle 0| + i\langle 1|)(\psi_{0}|0\rangle + \psi_{1}|1\rangle)\right|^{2}$$
$$= \frac{1}{2}|\psi_{0} + i\psi_{1}|^{2}$$

 $\mathbf{3}$

Tutorial 1

b. Show that the states $|L\rangle$ and $|R\rangle$ can be generated from $|0\rangle$ and $|1\rangle$ using the following circuit:

$$|0/1\rangle$$
 H $R_{\pi/2}$ $|R/L\rangle$

where

$$R_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}.$$

Solution:

$$R_{\pi/2}H |0\rangle = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = |R\rangle$$
$$R_{\pi/2}H |1\rangle = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} = |L\rangle$$

c. What circuit will allow implementing a measurement on the $|L\rangle$ and $|R\rangle$ basis if our hardware only allows for measurement in the computational basis? Use H and R_{θ} gates.

Solution: In 1a) we saw that H is its own inverse, and it can be verified that $R_{-\pi/4}$ is inverse of $R_{\pi/4}$ gate, i.e. $R_{-\pi/4}R_{\pi/4} = R_{\pi/4}R_{-\pi/4} = I$. Hence, the circuit

$$|R/L\rangle$$
 $R_{-\pi/2}$ H $|0/1\rangle$

can be used to map $|R\rangle$ and $|L\rangle$ into a computational basis where they can be distinguished by the measurement.