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Problem 1: Tensor Product

a. Consider the quantum state:

|ψ⟩ =
√
3

2
|0⟩+

√
1

2
|1⟩

1. Calculate |ψ⟩⊗2, where |ψ⟩⊗2 ≡ |ψ⟩ ⊗ |ψ⟩.

2. Calculate |+⟩ ⊗ |−⟩ ⊗ |+⟩, where |±⟩ = 1√
2
(|0⟩ ± |1⟩).

Solution: There are two ways to represent the tensor product |ψ⟩⊗2 ≡ |ψ⟩⊗|ψ⟩. One could
use either the “bra-ket” notation or the matrix representation. Starting with the “bra-ket”
notation, we have:

|ψ⟩⊗2 = |ψ⟩ ⊗ |ψ⟩ =

(√
3

2
|0⟩+

√
1

2
|1⟩

)
⊗

(√
3

2
|0⟩+

√
1

2
|1⟩

)

=
3

4
|0⟩ ⊗ |0⟩+

√
3

4
|0⟩ ⊗ |1⟩+

√
3

4
|1⟩ ⊗ |0⟩+ 1

4
|1⟩ ⊗ |1⟩

=
3

4
|00⟩+

√
3

4
|01⟩+

√
3

4
|10⟩+ 1

4
|11⟩ ,

where we used the simplification of notation |xy⟩ = |x⟩ ⊗ |y⟩. However, if we use the matrix

representation and recall that |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
we can write |ψ⟩ in the matrix form:

|ψ⟩ =
√
3

2

(
1
0

)
+

1

2

(
0
1

)
=

1

2

(√
3
1

)
Thus, we can easily calculate |ψ⟩⊗2 as:

|ψ⟩⊗2 =
1

2

(√
3
1

)
⊗ 1

2

(√
3
1

)
=

1

4


3√
3√
3
1


The two representations are equivalent and can easily be verified if we calculate the matrix
representations of the basis vectors |00⟩ , |01⟩ , |10⟩ , |11⟩.
For the second case, |+⟩|−⟩|+⟩, working in the exact same way we can verify that:

|+⟩|−⟩|+⟩ = 1

23/2
(|000⟩+ |001⟩ − |010⟩ − |011⟩+ |100⟩+ |101⟩ − |110⟩ − |111⟩) ,
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where we used the simplification of notation |xyz⟩ = |x⟩ ⊗ |y⟩ ⊗ |z⟩.

b. Consider the four Pauli matrices:

I, Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
.

Calculate the tensor products:

1. Z ⊗X

2. X ⊗ Y

3. Compute the product of the two 4× 4 matrices (Z ⊗X)× (X ⊗ Y ).

4. Show that (Z ⊗X)× (X ⊗ Y ) = ZX ⊗XY to verify the identity (A⊗ B)(C ⊗D) =
(AC ⊗BD).

Solution: We will calculate step by step the tensor product Z ⊗X. We have:

Z ⊗X =

(
1 0
0 −1

)
⊗
(
0 1
1 0

)
=1

(
0 1
1 0

)
0

(
0 1
1 0

)
0

(
0 1
1 0

)
−1

(
0 1
1 0

)
 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


Similarly, for X ⊗ Y we get:

X ⊗ Y =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


The third question is just a matrix multiplication of two 4× 4 matrices. Thus,

(Z ⊗X)× (X ⊗ Y ) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0



0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0



=


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0
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Finally, for the last question, the identity states that we can first do the multiplication
between the operators that act on the same subsystems and then take the tensor product.
Recall the Pauli matrices properties:

ZX = iY =

(
0 1
−1 0

)
, XY = iZ =

(
i 0
0 −i

)
So,

(Z ⊗X)× (X ⊗ Y ) = ZX ⊗XY =

(
0 1
−1 0

)
⊗
(
i 0
0 −i

)
=


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0



c. Consider two linear operators A,B.

1. Prove that if A,B are unitary operators, then (A⊗B) is also unitary.

2. Prove that if A,B are projector operators, then (A⊗B) is also a projector.

Solution: Consider any two linear operators A and B. It is easy to prove that:

(A⊗B)∗ = A∗ ⊗B∗

(A⊗B)T = AT ⊗BT

If we combine the above equations, we get:

(A⊗B)† = (A† ⊗B†)

An operator U is called a unitary if it satisfies UU † = U †U = I. Consider the two unitary
operators A,B which satisfy AA† = A†A = I and BB† = B†B = I. Using the identity of
Question (b.4) we get:

(A⊗B)†(A⊗B) = (A† ⊗B†)(A⊗B)

= (A†A⊗B†B) = (I ⊗ I) = I

It is easy to see that also:
(A⊗B)(A⊗B)† = I

and thus we proved that if A,B are unitary operators, then (A⊗B) is also unitary.

Now for the second question, an operator P is called a projector if it satisfies P 2 = P . Using
again the identity of Question (b.4) we have

(A⊗B)2 = (A⊗B)(A⊗B) = (A2 ⊗B2) = (A⊗B)

and so indeed if A,B are projector operators then (A⊗B) is also a projector.
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Problem 2: Concatenation and composition of gates

Consider the quantum circuit which consists of two Hadamard gates H, followed by a CNOT
and finally with two more Hadamard gates:

|ψ1⟩ H H
|ψ⟩

|ψ2⟩ H H

a. We have seen in the lectures that a CNOT can be written in terms of a linear combination
of tensor products of projectors into the computation basis P0/1, the identity matrix I and
the Pauli matrix X. Using the rules of tensor product, linearity seen in the course, prove
that this circuit is equivalent to a CNOT control is now the lower qubit.

Solution: First, recall that the CNOT gate can be written as CNOT = |0⟩ ⟨0| ⊗ I +
|1⟩ ⟨1| ⊗X = P0 ⊗ I + P1 ⊗X

The unitary operator corresponding to the action of the circuit can be written as U =
(H ⊗H)CNOT (H ⊗H). It’s easy to see that the multiplication gives us:

(H ⊗H)CNOT (H ⊗H) = (H ⊗H)(|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X)(H ⊗H)

=⇒ (H ⊗H)CNOT (H ⊗H) = P+ ⊗ I + P− ⊗ Z

where P+ = |+⟩ ⟨+| and P− = |−⟩ ⟨−| are the projectors in the {|+⟩ , |−⟩} basis. Note that
we used the identity0HXH = Z. Now by expanding the unitary in its matrix representation,
we get:

U =
1

2

(
1 1
1 1

)
⊗
(
1 0
0 1

)
+

1

2

(
1 −1
−1 1

)
⊗
(
1 0
0 −1

)

=⇒ U =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


In order to understand if this is a well known 2-qubit gate, we can see how it acts on the
computational basis states. We have:

U |00⟩ = |00⟩ , U |01⟩ = |11⟩
U |10⟩ = |10⟩ , U |11⟩ = |01⟩

It is clear then that the circuit U is actually a CNOT gate with the control and target qubit
interchanged. Thus:
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H H

H H

=

b. Calculate the output state |ψ⟩ via application of the different quantum gates to the inputs:

1. |ψ1⟩ = a |0⟩+ b |1⟩ with a, b ∈ C is a general quantum state and |ψ2⟩ = |0⟩.

Solution: The circuit being equivalent to a CNOT controlled by the lower qubit, it
is easy to see that the output will leave the state invariant, as |ψ2⟩ = |0⟩.

2. |ψ1⟩ = |0⟩ and |ψ2⟩ = a |0⟩+ b |1⟩ with a, b ∈ C.

Solution: We start with the state:

|ψ⟩ = a |00⟩+ b |01⟩

Then the action of the reversed CNOT is just:

U |ψ⟩ = a |00⟩+ b |11⟩

Note that this state is an entangled state if both a and b are non-zero, which means that
it cannot be written as a tensor product of the subsequent systems, i.e., |ψ⟩ ≠ |ψ1⟩⊗|ϕ2⟩
for all |ψ1⟩ and |ψ2⟩.

Problem 3: Bell Measurement

a. Consider the four Bell quantum states:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

1. Verify that the Bell states form an orthonormal basis of the Hilbert system that de-
scribes the composite system.
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2. Prove the completeness relation
∑4

i=1 |ui⟩ ⟨ui| = I4 where |ui⟩ are the set of four Bell
states.

Solution: First of all, recall that for computational basis vectors |ij⟩ ≡ |i⟩ ⊗ |j⟩:

⟨kl|ij⟩ = δkiδlj

We will prove that |Φ+⟩ is orthogonal to |Φ−⟩. You are advised to do the same for all other
states. We have:

⟨Φ+|Φ−⟩ = 1

2
(⟨00|+ ⟨11|)(|00⟩ − |11⟩) = 1

2
(⟨00|00⟩+ ⟨11|00⟩ − ⟨00|11⟩ − ⟨11|11⟩) = 0

so indeed |Φ+⟩ and |Φ−⟩ are orthogonal. The same applies for every other pair of Bell state.
We can also prove easily that all Bell states are normalised to 1. We work again with |Φ+⟩:

√
⟨Φ+|Φ+⟩ =

√
1

2
(⟨00|+ ⟨11|)(|00⟩+ |11⟩) =

√
1

2
(⟨00|00⟩+ ⟨11|00⟩+ ⟨00|11⟩+ ⟨11|11⟩) = 1

Thus, the four Bell quantum states do form an orthonormal basis for H = C4 (i.e. H =
span{|Φ+⟩ , |Φ−⟩ , |Ψ+⟩ , |Ψ−⟩}) as:

• They are orthogonal

• They are normalised to one.

• The number of basis vectors are the same with the dimension of the Hilbert space.

For the second question, we must calculate all outer products |ui⟩ ⟨ui| for every bell state
|ui⟩. We have:

|Φ+⟩ ⟨Φ+| = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , |Φ−⟩ ⟨Φ−| = 1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1



|Ψ+⟩ ⟨Ψ+| = 1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , |Ψ−⟩ ⟨Ψ−| = 1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


So clearly

∑4
i=1 |ui⟩ ⟨ui| = I4 where |ui⟩ are the set of four Bell states, and so we proved the

completeness relation.

b. Consider the quantum circuit:
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|ψ⟩
H

|ψ′⟩

Calculate the output state when:

• |ψ⟩ = |0⟩ |0⟩

• |ψ⟩ = |0⟩ |1⟩

• |ψ⟩ = |1⟩ |0⟩

• |ψ⟩ = |1⟩ |1⟩

Solution: We will find the output state for the first case where |ψ⟩ = |0⟩ |0⟩. We split
again the circuit into two steps:

|ψ⟩
H

|ψ′⟩

1 2

Step 1: On the first step, the operator H ⊗ I acts on the state |ψ⟩ and gives us:

|ψ⟩1 = (H ⊗ I)(|0⟩ ⊗ |0⟩) = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩)

Step 2: On the second step, we act with the CNOT and get:

|ψ′⟩ = CNOT |ψ⟩1 =
1√
2
(|00⟩+ |11⟩) = |Φ+⟩

Working in the exact same way for the rest of the inputs you can verify that:

• If |ψ⟩ = |0⟩ |1⟩ then |ψ′⟩ = |Ψ+⟩.

• If |ψ⟩ = |1⟩ |0⟩ then |ψ′⟩ = |Φ−⟩.

• If |ψ⟩ = |1⟩ |1⟩ then |ψ′⟩ = |Ψ−⟩.

c. Consider the quantum circuit ending in a joint computational measurement of both qubits,
leading to four possible outcomes 00, 01, 10, and 11:
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|ψ⟩
H

1. If we use the Bell state |Ψ+⟩ as input to the circuit, what is the probability of each of
the 4 possible outcomes?

2. And what about when we use |Ψ−⟩ and |Φ±⟩ as input?

3. What are the outcome probabilities resulting from the input state |00⟩?

4. What will be the outcome probabilities when we input any state of the computational
basis of the two qubits, i.e., |x1⟩ ⊗ |x2⟩ where xi ∈ {0, 1}?

Solution: First of all, we consider as input the Bell state |Ψ+⟩ = 1√
2
(|01⟩+ |10⟩). Similarly

to the previous exercises we break the quantum circuit into three parts with the first two
parts referring to the action of the quantum gates and the third part being the measurement:

|ψ⟩
H

1 2

Step 1: We act with the CNOT gate and thus we get:

|ψ⟩1 = CNOT |Ψ+⟩ = 1√
2
(|01⟩+ |11⟩) = 1√

2
(|0⟩+ |1⟩)⊗ |1⟩

Step 2: We act with the Hadamard operator on the first qubit (H ⊗ I):

|ψ⟩2 = (H ⊗ I) |ψ⟩1 = (H ⊗ I)
1√
2
(|0⟩+ |1⟩)⊗ |1⟩ = |01⟩

So we will measure with 100% probability the computational basis state |01⟩. For the other
three input states |Ψ−⟩, |Φ+⟩ and |Φ−⟩ we will measure with 100% probability the computa-
tional basis states |11⟩, |00⟩ and |10⟩ respectively.
Now for the case where |ψ⟩ = |00⟩ we have:

Step 1:
|ψ⟩1 = |00⟩
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Step 2:

|ψ⟩2 =
1√
2
(|00⟩+ |10⟩)

In this case, we can measure |00⟩ or |10⟩ with an equal probability of 1/2. For question 4,
we can work in the same manner to get:

• If the input state is |ψ⟩ = |01⟩, then the output state is |ψ′⟩ = 1√
2
(|01⟩+ |11⟩). In this

case, we can measure |01⟩ or |11⟩ with an equal probability of 1/2.

• If the input state is |ψ⟩ = |10⟩, then the output state is |ψ′⟩ = 1√
2
(|01⟩ − |11⟩). In this

case, we can measure |01⟩ or |11⟩ with an equal probability of 1/2.

• If the input state is |ψ⟩ = |11⟩, then the output state is |ψ′⟩ = 1√
2
(|00⟩ − |10⟩). In this

case, we can measure |00⟩ or |10⟩ with an equal probability of 1/2.
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