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Problem 1: Pauli Commutation Relations

1a. Consider the two Pauli operators P ∈ P⊗n and G ∈ P⊗n. These operators are said
to intersect trivially at position i if Pi = Gi or Pi, Gi = I. They intersect non-trivially if
Pi ̸= Gi and Pi, Gi ̸= I. Show that P and G will commute if they intersect non-trivially in an
even number of locations and anti-commute if they intersect in an odd number of locations.

Solution:

1. Let N be the number of qubits where Pi and Gi both act non-trivially (Pi, Gi ̸= I)
and Pi ̸= Gi.

2. At each such qubit, Pi and Gi are different Pauli matrices, so they anti-commute:
PiGi = −GiPi.

3. The total commutation factor is (−1)N : PG = (−1)NGP .

4. If N is even, (−1)N = 1, so P and G commute.

5. If N is odd, (−1)N = −1, so P and G anti-commute.

1b. Do the Pauli operators X1Z2Y5 and X2Y5X7 commute or anti-commute?

Solution: They anti-commute as they intersect non-trivially only once on qubit 2.

1c. Do the Pauli operators X1Z2 and Z1X2 commute or anti-commute?

Solution: They commute as they intersect non-trivially an even number of times on
qubits 1 and 2.

Problem 2: The two-qubit repetition code for phase flips

Figure 1 shows the two-qubit repetition code protocol for detecting phase-flip errors.

2a. What are the logical basis states of this code?

Solution: The logical basis states are |0⟩L = |++⟩ and |1⟩ = |−−⟩.
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Figure 1: The two-qubit repetition code for phase flips

2b. Show that the stabiliser generator X1X2 acts as the identity on the basis states.

Solution: The Pauli-X operator acts as follows on the congugate basis states: X |+⟩ =
|+⟩ and X |−⟩ = (−1) |−⟩. The X1X2 stabiliser therefore has the following action on the
basis states:

X1X2 |++⟩ = |++⟩

X1X2 |−−⟩ = (−1)(−1) |−−⟩ = |−−⟩

2c. Show that immediately before the measurement of auxiliary qubit A the system is in
the following state:

1

2
(I +X1X2)E |ψ⟩L |0⟩A +

1

2
(I −X1X2)E |ψ⟩L |1⟩A

Solution:

We start with the state after the error has occurred:

E |ψ⟩L |0⟩A

where E is the error operator acting on the data qubits, |ψ⟩L is the encoded logical state,
and |0⟩A is the initial state of the auxiliary qubit.

Step 1: Apply Hadamard Gate to the Auxiliary Qubit

The Hadamard gate transforms the auxiliary qubit as follows:

|0⟩A
H−→ 1√

2
(|0⟩A + |1⟩A)
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The combined state becomes:

E |ψ⟩L
(

1√
2
(|0⟩A + |1⟩A)

)
=

1√
2
E |ψ⟩L |0⟩A +

1√
2
E |ψ⟩L |1⟩A

Step 2: Apply Controlled-X1X2 Gate

The controlled-X1X2 gate applies theX1X2 operator to the data qubits when the auxiliary
qubit is in state |1⟩A:

1√
2
E |ψ⟩L |0⟩A +

1√
2
X1X2E |ψ⟩L |1⟩A

Step 3: Apply Hadamard Gate to the Auxiliary Qubit Again

Applying the Hadamard gate to the auxiliary qubit transforms the states:

|0⟩A
H−→ 1√

2
(|0⟩A + |1⟩A)

|1⟩A
H−→ 1√

2
(|0⟩A − |1⟩A)

The total state becomes:

1√
2
E |ψ⟩L

(
1√
2
(|0⟩A + |1⟩A)

)
+

1√
2
X1X2E |ψ⟩L

(
1√
2
(|0⟩A − |1⟩A)

)
=

1

2
E |ψ⟩L (|0⟩A + |1⟩A) +

1

2
X1X2E |ψ⟩L (|0⟩A − |1⟩A)

Step 4: Combine Like Terms

Grouping terms with |0⟩A and |1⟩A:

Coefficient of |0⟩A :
1

2
E |ψ⟩L +

1

2
X1X2E |ψ⟩L =

1

2
(I +X1X2)E |ψ⟩L

Coefficient of |1⟩A :
1

2
E |ψ⟩L − 1

2
X1X2E |ψ⟩L =

1

2
(I −X1X2)E |ψ⟩L

Therefore, the state immediately before the measurement of the auxiliary qubit A is:

1

2
(I +X1X2)E |ψ⟩L |0⟩A +

1

2
(I −X1X2)E |ψ⟩L |1⟩A

This is the desired expression, showing that the system is in the given state before mea-
suring the auxiliary qubit.
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2d. Show that the measurement of auxiliary qubit A1 yields ‘0’ if [E,X1X2] = 0 and ‘1’ if
{E,X1X2} = 0.

Solution:

From part 2c, immediately before the measurement of the auxiliary qubit A, the state of
the system is:

1

2
(I +X1X2)E |ψ⟩L |0⟩A +

1

2
(I −X1X2)E |ψ⟩L |1⟩A .

The probability of measuring A in state |0⟩A is proportional to the squared norm of the
coefficient of |0⟩A:

P (0) =

∥∥∥∥12(I +X1X2)E |ψ⟩L

∥∥∥∥2

.

Similarly, the probability of measuring A in state |1⟩A is:

P (1) =

∥∥∥∥12(I −X1X2)E |ψ⟩L

∥∥∥∥2

.

Case 1: If E commutes with X1X2, i.e., [E,X1X2] = 0, then:

X1X2E |ψ⟩L = EX1X2 |ψ⟩L = E |ψ⟩L ,

since X1X2 stabilizes |ψ⟩L. Thus:

(I +X1X2)E |ψ⟩L = (I + I)E |ψ⟩L = 2E |ψ⟩L ,

and
(I −X1X2)E |ψ⟩L = (I − I)E |ψ⟩L = 0.

Therefore, P (0) = ∥E |ψ⟩L ∥2 and P (1) = 0. The measurement yields outcome 0.

Case 2: If E anticommutes with X1X2, i.e., {E,X1X2} = 0, then:

X1X2E |ψ⟩L = −EX1X2 |ψ⟩L = −E |ψ⟩L .

Thus:
(I +X1X2)E |ψ⟩L = (I − I)E |ψ⟩L = 0,

and
(I −X1X2)E |ψ⟩L = (I + I)E |ψ⟩L = 2E |ψ⟩L .

Therefore, P (0) = 0 and P (1) = ∥E |ψ⟩L ∥2. The measurement yields outcome 1.

Thus, the measurement of auxiliary qubitA yields 0 if [E,X1X2] = 0 and 1 if {E,X1X2} =
0.
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2e. Complete syndrome table (Tab 1).

Error s1
I1 ⊗ I2
X1 ⊗ I2
I1 ⊗X2

X1 ⊗ I2
X1 ⊗X2

I1 ⊗ Z2

Z1 ⊗ II
Z1 ⊗ Z2

Table 1: Syndrome table for the 2-qubit repetition code for phase flips.

Solution:

We complete the syndrome table by determining whether each error operator E commutes
or anticommutes with the stabilizer X1X2. The syndrome bit s1 is 0 if E commutes with
X1X2 and 1 if it anticommutes. The completed syndrome table is shown in Tab 2.

Error s1
I1 ⊗ I2 0
X1 ⊗ I2 0
I1 ⊗X2 0
X1 ⊗X2 0
I1 ⊗ Z2 1
Z1 ⊗ I2 1
Z1 ⊗ Z2 0

Table 2: Solution: syndrome table

Explanation:

• For errors I1I2, X1I2, I1X2, and X1X2, they either act trivially or identically on
qubits where the stabilizer acts, resulting in commutation (s1 = 0).

• Errors involving Z operators (I1Z2, Z1I2) anticommute with X on the same qubit.
Since they differ on one qubit where both act non-trivially and differently, they
anticommute (s1 = 1).

• For Z1Z2, the error anticommutes with X on both qubits (an even number), so the
total effect is commutation (s1 = 0).
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2f. Identify an XL and ZL logical operator for this code. Show that these operators have
the correct action on the logical basis states.

Solution:

Identifying Logical Operators:

• Logical X operator (XL): We choose XL = Z1Z2.

• Logical Z operator (ZL): We choose ZL = X1 or ZL = X2.

Verification of Correct Action on Logical Basis States:

Action of XL on Logical States:

XL |0⟩L = Z1Z2 |++⟩ = (Z |+⟩)⊗ (Z |+⟩) = |−⟩ ⊗ |−⟩ = |−−⟩ = |1⟩L ,
XL |1⟩L = Z1Z2 |−−⟩ = (Z |−⟩)⊗ (Z |−⟩) = (− |+⟩)⊗ (− |+⟩) = |++⟩ = |0⟩L .

Thus, XL flips the logical states, acting as a logical X operator.

Action of ZL on Logical States:

ZL |0⟩L = X1 |++⟩ = X |+⟩ ⊗ |+⟩ = |+⟩ ⊗ |+⟩ = |++⟩ = |0⟩L ,
ZL |1⟩L = X1 |−−⟩ = X |−⟩ ⊗ |−⟩ = (− |−⟩)⊗ |−⟩ = − |−−⟩ = − |1⟩L .

Therefore, ZL leaves |0⟩L unchanged and introduces a phase −1 to |1⟩L, acting as a logical
Z operator.

Commutation with Stabilizer:

Both XL = Z1Z2 and ZL = X1 commute with the stabilizer X1X2:

• [Z1Z2, X1X2] = 0 because Zi and Xi anticommute on each qubit, and the anticom-
mutations on qubits 1 and 2 cancel out (even number).

• [X1, X1X2] = X1(X1X2)− (X1X2)X1 = X2
1X2 −X1X2X1 = X2 −X2 = 0.

This confirms that XL and ZL are valid logical operators for the code.

Anti-commutation with each other.

The two logical operators XL and ZL anti-commute with one another. We can verify this
for both choices of the ZL logical operator:

{Z1Z2, X1} = 0

{Z1Z2, X2} = 0
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2g. What is the distance of this code?

Solution:

The distance of a quantum code is defined as the minimum weight (number of qubits
acted upon) of a non-trivial logical operator or, equivalently, the minimum weight of an
undetectable error that maps codewords to other codewords without being detected by
the stabilizers.

In this code:

• The stabilizer generator is X1X2, which stabilizes the code space spanned by |++⟩
and |−−⟩.

• The logical X operator is XL = Z1Z2, acting on both qubits.

• The logical Z operator can be chosen as ZL = X1 or ZL = X2, each acting on a
single qubit.

Minimum Weight of Logical Operators:

• XL = Z1Z2 has a weight of 2 since it acts non-trivially on both qubits.

• ZL = X1 or ZL = X2 has a weight of 1 since it acts non-trivially on only one qubit.

The minimum weight of a non-trivial logical operator is therefore 1, corresponding to the
logical Z operator ZL = X1 or ZL = X2.

Implications for Code Distance:

Since the minimum weight of a logical operator is 1, the distance of the code is 1.

Error Detection Capability:

• Single-qubit Z errors (phase flips) anticommute with the stabilizer X1X2 and are
detectable.

• Single-qubit X errors (bit flips), such as X1 or X2, act as logical operators ZL and
are undetectable by the stabilizer.

Conclusion:

This code is specifically designed to detect phase-flip errors but not bit-flip errors. The
distance being 1 means that the code cannot detect all single-qubit errors, as some single-
qubit errors correspond to logical operations and cannot be detected by the stabilizer.

Therefore, while the code can detect single-qubit Z errors, it cannot detect single-qubit
X errors. The distance of the code is 1.
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Problem 3: The Five-Qubit Code

The five-qubit code is defined by the stabiliser group S generated by ⟨S⟩ :

S = ⟨S⟩ =

〈X1Z2Z3X4I5
I1X2Z3Z4X5

X1I2X3Z4Z5

Z1X2I3X4Z5

〉

3a. How many logical qubits are encoded by this code?

Solution: The number of logical qubits k encoded by a stabiliser code is given by:

k = n− rank(S) = n− |S|

For this code, n = 5 and |S| = 4. The number of logical qubits is therefore

k = 5− 4 = 1

3b. The logical basis states of the five-qubit code are given below.

|0L⟩ =
1

4
(|00000⟩+ |10010⟩+ |01001⟩+ |10100⟩+ |01010⟩ − |11011⟩ − |00110⟩ − |11000⟩

−|11101⟩ − |00011⟩ − |11110⟩ − |01111⟩ − |10001⟩ − |01100⟩ − |10111⟩+ |00101⟩),

|1⟩L =
1

4
(|11111⟩+ |01101⟩+ |10110⟩+ |01011⟩+ |10101⟩ − |00100⟩ − |11001⟩ − |00111⟩

−|00010⟩ − |11100⟩ − |00001⟩ − |10000⟩ − |01110⟩ − |10011⟩ − |01000⟩+ |11010⟩).

Show that both XL = X1X2X3X4X5 and ZL = Z1Z2Z3Z4Z5 are a valid choice of logical
operators for the code.

Solution:

We can verify this by checking the action on the logical basis states:

1. XL|0⟩L = |1⟩L:
Applying XL flips all qubits in each term of |0⟩L, transforming it into |1⟩L.
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2. ZL|0⟩L = |0⟩L:
Applying ZL assigns a phase of +1 to each |0⟩ and −1 to each |1⟩. Due to fact each
ket of |0⟩L has an even number of ‘1‘s, the overall state remains unchanged.

3. ZL|1⟩L = −|1⟩L
Similarly, applying ZL to |1⟩L introduces a global phase of −1 as each ket has an
odd number of ‘1’s, consistent with the logical Z operation.

3c. Complete the single-qubit syndrome table for this code:

Error s1 s2 s3 s4
X1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗X2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗X3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗X4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗X5

Z1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗ Z2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗ Z3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗ Z4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ Z5

Table 3: Single-Qubit Syndrome Table (Tab 3) for the Five-Qubit Code.

Solution:

The completed syndrome table is shown in Tab 4.

To determine the syndrome bits s1, s2, s3, s4 for each single-qubit error, we check the
commutation relation between the error E and each stabilizer generator Si. The syndrome
bit si is set to:

si =

{
0 if [E, Si] = 0 (commute)

1 if {E, Si} = 0 (anticommute)

Example:

Error X1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5: This error anti-commutes with only S4. This results in the
syndrome (0, 0, 0, 1).

The completed table is in Tab 4.
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Error s1 s2 s3 s4
X1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5 0 0 0 1
I1 ⊗X2 ⊗ I3 ⊗ I4 ⊗ I5 1 0 0 0
I1 ⊗ I2 ⊗X3 ⊗ I4 ⊗ I5 1 1 0 0
I1 ⊗ I2 ⊗ I3 ⊗X4 ⊗ I5 0 1 1 0
I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗X5 0 0 1 1
Z1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5 1 0 1 0
I1 ⊗ Z2 ⊗ I3 ⊗ I4 ⊗ I5 0 1 0 1
I1 ⊗ I2 ⊗ Z3 ⊗ I4 ⊗ I5 0 0 1 0
I1 ⊗ I2 ⊗ I3 ⊗ Z4 ⊗ I5 1 0 0 1
I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ Z5 0 1 0 0

Table 4: Single-Qubit Syndrome Table for the Five-Qubit Code

3d. Explain why this is a correction code with distance d ≥ 3.

Solution:

From the syndrome table, we see that each single-qubit error maps to a unique syndrome.
The number of correctable errors t is given by t = (d − 1)/2. Rearranging this, we find
that d = 3.

3e. Find a pair of XL and ZL logical operators of weight 3.

Solution:

From 3b. we have two weight-five logical operators: XL = X1X2X3X4X5 and ZL =
Z1Z2Z3Z4Z5. Any logical operator multipled by a stabiliser is also a logical operator. We
can therefore reduce the weight of our logicals by multiplying by stabilisers. Recall that:
XZ = −iY .

Multiplying S1 = X1Z2Z3X4I5 by XL gives:

X ′
L = (X1X2X3X4X5)(X1Z2Z3X4I5) = −(I1Y2Y3I4X5)

Similarily, multiplying S1 = X1Z2Z3X4I5 by ZL gives:

Z ′
L = (Z1Z2Z3Z4Z5)(X1Z2Z3X4I5) = −(Y1I2I3Y4Z5)

The above logical operators have weight d = 3. The distance of the code is therefore
d = 3.
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3f. What are the [[n, k, d]] parameters of this code?

Solution: The number of physical qubits is n = 5. From 3a, k = 1. From 3e., d = 3.
The code paramters are therefore [[n = 5, k = 1, d = 3]].

Problem 4: The Surface Code

4a. Figure 2 shows the Tanner graph for a surface code defined over 5 qubits. List the four
stabiliser generators that are measured by this code.

q1 S3 q2

S1 q5 S2

q3 S4 q4

Figure 2: The five-qubit surface code. Dashed edges denote Z-type checks and solid edges
X-type checks

Solution: The stabilisers of this code are:

S1 = X1X3X5

S2 = X2X4X5

S3 = Z1Z2Z5

S4 = Z3Z4Z5

4b. How many logical qubits does this code encode?

Solution: There are four stabiliser generators, |S| = 4. The logical qubit count is
therefore k = n− |S| = 5− 4 = 1.

4c. This code has distance d = 2. Find the logical operator pair ZL, XL.
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Solution: In the surface code, logical operators span from edge-to-edge. The following
is choice of logical operators:

XL = X1X2

ZL = Z1Z3

It is straightforward to verify that these logical operators commute with the stabilisers
and anti-commute with another. An alternative choice of logical operators is:

XL = X3X4

ZL = Z2Z4

4d. Explain why this code is a detection code and not a correction code.

Solution: This code is a detection code as it has distance d = 2. The number of
correctable errors t is given by the expression t = (d− 1)/2. As such, any correction code
must have d ≥ 3.

4e. What are the [[n, k, d]] parameters of this code?

Solution: The number of physical qubits n = 5, the logical qubit count is k = 1 and
d = 2. The code has parameters [[5, 1, 2]].

4f. Figure 3 shows the Tanner graph for a distance-4 surface code. Two X-errors have
occurred on qubits q20 and q6 activating a non-zero syndrome measurement for stabilisers S17

and S19. Explain why R = X6X20 and R′ = X10X21 are both suitable recovery operations.
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q1 S13 q2 S14 q3 S15 q4

S1 q17 S2 q18 S3 q19 S4

q5 S16

X

q6 S17

1
q7 S18 q8

S5

X

q20 S6 q21 S7 q22 S8

q9 S19

1
q10 S20 q11 S21 q12

S9 q23 S10 q24 S11 q25 S12

q13 S22 q14 S23 q15 S24 q16

Figure 3: The distance-4 surface code. Dashed edges denote Z-type checks and solid edges
X-type checks.

Solution: The original error is E = X6X20. The determine whether or not our recovery
operation is successful we first calculate the residual error. For the first recovery operation
R is this given by:

R = RE = I ∈ S

which is in the stabiliser group. For the second recovery R′ the residual error is:

R′ = R′E = X6X10X20X21 ∈ S

This residual is equivalent to a stabiliser as it is equal to the operator measured by
generator S6.

4g. The recovery operator R′′ = X7X8X9 would also reset the total syndrome of the surface
code. Explain why this is not a suitable recovery operator.
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Solution: The residual error for this recovery would be:

R′′ = R′′E = X6X7X8X9X20 ∈ L

This represents a chain of X-type Pauli operators spanning from the left edge of the
surface code to the right edge. Error chains of this type are equivalent to XL logical
operators. The recovery operator R′′ would therefore change the logical information
encoded by the code.
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