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Problem 1: Pauli Commutation Relations

la. Consider the two Pauli operators P € P®" and G € P®". These operators are said
to intersect trivially at position ¢ if P, = G; or P;,G; = I. They intersect non-trivially if
P, # G; and P;,G; # I. Show that P and G will commute if they intersect non-trivially in an
even number of locations and anti-commute if they intersect in an odd number of locations.

Solution:

1. Let N be the number of qubits where P; and G; both act non-trivially (P;, G; # I)
and P; # G,.

2. At each such qubit, P, and G; are different Pauli matrices, so they anti-commute:

3. The total commutation factor is (—1)Y: PG = (—=1)NGP.
4. If N is even, (—1)Y =1, so P and G commute.

5. If N is odd, (—1)" = —1, so P and G anti-commute.

1b. Do the Pauli operators X;Z5Y5 and X5Y5X7; commute or anti-commute?

Solution: They anti-commute as they intersect non-trivially only once on qubit 2.

1c. Do the Pauli operators X;Z; and Z; X, commute or anti-commute?

Solution: They commute as they intersect non-trivially an even number of times on
qubits 1 and 2.

Problem 2: The two-qubit repetition code for phase flips

Figure 1 shows the two-qubit repetition code protocol for detecting phase-flip errors.
2a. What are the logical basis states of this code?

Solution: The logical basis states are |0); = |[++) and |1) = |——).
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Figure 1: The two-qubit repetition code for phase flips
2b. Show that the stabiliser generator X;.Xs acts as the identity on the basis states.

Solution: The Pauli-X operator acts as follows on the congugate basis states: X |[+) =
|[+) and X |-) = (—1) |—). The X; X, stabiliser therefore has the following action on the
basis states:

X1 X [+4) = |[++)
XX, |==) = (-1)(=1) |-=) = |--)

2c. Show that immediately before the measurement of auxiliary qubit A the system is in
the following state:

1 1
5(1 + X1 Xo)E ), [0) 4 + 5(1 — X1 Xo)E ), 1) 4

Solution:

We start with the state after the error has occurred:

E¢)110) 4

where E is the error operator acting on the data qubits, |¢); is the encoded logical state,
and |0) , is the initial state of the auxiliary qubit.

Step 1: Apply Hadamard Gate to the Auxiliary Qubit

The Hadamard gate transforms the auxiliary qubit as follows:

g 1
0)4 — EOO)A + 1) 4)
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The combined state becomes:
1 1 1
Ely), (E(IOM + |1>A)) = EE ) 10) 4 + EE ) 1) a

Step 2: Apply Controlled- X, X; Gate

The controlled- X X5 gate applies the X; X5 operator to the data qubits when the auxiliary
qubit is in state |1) ,:

1 1
ok [9),10) 4 + 7

Step 3: Apply Hadamard Gate to the Auxiliary Qubit Again
Applying the Hadamard gate to the auxiliary qubit transforms the states:

X1 XoE ), 1)

muiﬁﬁMwmp
uuijﬁwﬁum
The total state becomes:
1 1 1
VfWhQ@MNMMO 2 XX B ), ( Aﬁ

1X1X2E\w> (10) 5

= SB[, (004 + 1))+ 5

Step 4: Combine Like Terms
Grouping terms with |0) , and |1) ,:

1 1 1

Coefficient of |0) , : —E |v) + §X1X2E Y)Y, = 5([ + X1 X2)E |[¥)
1 1

Coeflicient of [1) , E V) — —X1X2E V), = 2([ - XiXo)E ),

Therefore, the state immediately before the measurement of the auxiliary qubit A is:

1
S+ XiXa)B[9), [0, + 5T = X X2)E6), 1),

This is the desired expression, showing that the system is in the given state before mea-
suring the auxiliary qubit.
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2d. Show that the measurement of auxiliary qubit A; yields ‘0" if [E, X;X5] = 0 and ‘1’ if
(E,X,X,} = 0.

Solution:

From part 2c, immediately before the measurement of the auxiliary qubit A, the state of
the system is:

S+ X0 B 10), + 5T = XX Bl 1),

The probability of measuring A in state |0) , is proportional to the squared norm of the

coefficient of |0) ,:

1 2

P(0) = H5(1+X1X2)E!1D>L

Similarly, the probability of measuring A in state |1) , is:

2

P(1) = H%([ ~ X1 X5)E ),

Case 1: If £ commutes with X; X5, i.e., [F, X;X5] =0, then:
XiXoE ), = EXiXo[Y)p = EY)
since X;.X; stabilizes |¢),. Thus:
I+ X1 Xo)E ), = (I + DE[Y), =2E[¢)

and

(I = X1 Xo)E ), = (I —I)E |¢p), =0.
Therefore, P(0) = ||E |¢), ||* and P(1) = 0. The measurement yields outcome 0.
Case 2: If F anticommutes with X; X5, i.e., {E, X; X5} = 0, then:

X1 XoF |¢>L =-—EXi Xy |77Z}>L =-FE |¢>L .
Thus:
([ + X1 X2)E W), = (I = I)E ), =0,
and
(I = XiXo)Efp), = I+ DE)), = 2E ).
Therefore, P(0) = 0 and P(1) = ||E |¢), ||*. The measurement yields outcome 1.

Thus, the measurement of auxiliary qubit A yields 0 if [E, X1 X5] = 0and 1if {F, X; X5} =
0.



Joschka Roffe . IQC 2024-25
Jakub Adamski Tutorial 9 November 28, 2024

2e. Complete syndrome table (Tab 1).

Error S1
L ® I
X1 ®1
L ® Xy
X1 ® Iy
X1 ® X,
L ® Z,
Z @ 1Ip
AR

Table 1: Syndrome table for the 2-qubit repetition code for phase flips.

Solution:

We complete the syndrome table by determining whether each error operator £ commutes
or anticommutes with the stabilizer X;X5. The syndrome bit s; is 0 if £ commutes with
X1X5 and 1 if it anticommutes. The completed syndrome table is shown in Tab 2.

Error S
I ® I,
X1
L ® X
X1 ® X,
L ® Zy
ARSI

iy

SO = = OO o o

Table 2: Solution: syndrome table

Explanation:

e For errors I115, X115, [ X5, and X;.X5, they either act trivially or identically on
qubits where the stabilizer acts, resulting in commutation (s; = 0).

e Errors involving Z operators (I;Zs, Z115) anticommute with X on the same qubit.
Since they differ on one qubit where both act non-trivially and differently, they
anticommute (s; = 1).

e For 7,7, the error anticommutes with X on both qubits (an even number), so the
total effect is commutation (s; = 0).
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2f. Identify an X and Z; logical operator for this code. Show that these operators have
the correct action on the logical basis states.

Solution:

Identifying Logical Operators:
e Logical X operator (X): We choose X = Z,Z,.
e Logical Z operator (Z): We choose Z; = X; or Z = Xo.

Verification of Correct Action on Logical Basis States:

Action of X on Logical States:

Xp|0)p =212 |++) = (Z|[H) e (Z+H) =) el|-) =-=) =),
X =212,1-=) = (Z]-))®(Z]-) = (= [+) @ (= [+)) = [++) = [0). -

Thus, X, flips the logical states, acting as a logical X operator.
Action of Z; on Logical States:

Zpl0)y =Xi[+H) =X[H) @ [+H) = [+H) @ [+) = |++) = 10).,
Zp)y=Xi|-=)=X|9) 0| =(=|-)N&-)=—|-——)=—11),.
Therefore, Z;, leaves |0) , unchanged and introduces a phase —1 to |1),, acting as a logical

Z operator.

Commutation with Stabilizer:
Both X; = Z,Z, and Z; = X; commute with the stabilizer X;X5:

o (7175, X1X5] = 0 because Z; and X; anticommute on each qubit, and the anticom-
mutations on qubits 1 and 2 cancel out (even number).

o [X1, X1X0] = X1(X1X0) — (X1 X2) X1 = X2X5 — X1 XoXg = Xo — Xo = 0.

This confirms that X; and Zj, are valid logical operators for the code.
Anti-commutation with each other.

The two logical operators X, and Z; anti-commute with one another. We can verify this
for both choices of the Z}, logical operator:

{ZIZ27X1} =0
{ZIZQ7X2} =0
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2g. What is the distance of this code?

Solution:

The distance of a quantum code is defined as the minimum weight (number of qubits
acted upon) of a non-trivial logical operator or, equivalently, the minimum weight of an
undetectable error that maps codewords to other codewords without being detected by
the stabilizers.

In this code:

e The stabilizer generator is X X5, which stabilizes the code space spanned by |++)
and |——).

e The logical X operator is X;, = Z; 75, acting on both qubits.

e The logical Z operator can be chosen as Z; = X; or Z; = Xy, each acting on a
single qubit.

Minimum Weight of Logical Operators:

o X, = 7175 has a weight of 2 since it acts non-trivially on both qubits.

o 7 = X, or Z;, = X5 has a weight of 1 since it acts non-trivially on only one qubit.

The minimum weight of a non-trivial logical operator is therefore 1, corresponding to the
logical Z operator Z;, = X, or Z; = Xo.

Implications for Code Distance:
Since the minimum weight of a logical operator is 1, the distance of the code is 1.

Error Detection Capability:

e Single-qubit Z errors (phase flips) anticommute with the stabilizer X; X5 and are
detectable.

e Single-qubit X errors (bit flips), such as X; or X, act as logical operators Z;, and
are undetectable by the stabilizer.

Conclusion:

This code is specifically designed to detect phase-flip errors but not bit-flip errors. The
distance being 1 means that the code cannot detect all single-qubit errors, as some single-
qubit errors correspond to logical operations and cannot be detected by the stabilizer.

Therefore, while the code can detect single-qubit Z errors, it cannot detect single-qubit
X errors. The distance of the code is 1.
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Problem 3: The Five-Qubit Code

The five-qubit code is defined by the stabiliser group S generated by (S) :

X1 Z73X415
[ 1 X232, X5
N\ XLX3247;5
AP, CYEV. OV

S=(5)

3a. How many logical qubits are encoded by this code?

Solution: The number of logical qubits k encoded by a stabiliser code is given by:

k =n —rank(S) =n —|S|

For this code, n = 5 and |S| = 4. The number of logical qubits is therefore

k=5—-4=1
3b. The logical basis states of the five-qubit code are given below.

1
01.) = (]00000) + [10010) +[01001) + [10100) + |01010) — [11011) — [00110) — [11000)
—[11101) — |00011) — [11110) — |01111) — [10001) — [01100) — [10111) + |00101}),

1
1)z = 7 (|11111) + 01101) + [10110) + |01011) + [10101) — [00100) — [11001) — [00111)
—]00010) — |11100) — [00001) — |10000) — [01110) — |10011) — [01000) + |11010)).

Show that both X; = X1 XoX3X4 X5 and Z;, = Z17Z,757,75 are a valid choice of logical
operators for the code.

Solution:

We can verify this by checking the action on the logical basis states:

1. XL‘O>L == ‘1>L:
Applying X, flips all qubits in each term of |0), transforming it into |1).
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2. ZL|0>L = ‘O)LI

Applying 7|, assigns a phase of +1 to each |0) and —1 to each |1). Due to fact each
ket of |0), has an even number of ‘1‘s, the overall state remains unchanged.

3. Zp|yp=—|1)L

Similarly, applying Z, to |1); introduces a global phase of —1 as each ket has an
odd number of ‘1’s, consistent with the logical Z operation.

3c. Complete the single-qubit syndrome table for this code:

Error S1 | s | S3 | Sa
Xi®LoIs1, &I
LHLRXoRI3R 14 ® I
LRLRXs® 1, ® I
LRL® IR Xs® I
L®LRIz® 1 Xs
211, @131, I
L®Zy® 1301, ® I
LRLR IR 1R I5
LRLRI;R 7R I5
LRLRIzRI1,® Zs

Table 3: Single-Qubit Syndrome Table (Tab 3) for the Five-Qubit Code.

Solution:
The completed syndrome table is shown in Tab 4.

To determine the syndrome bits si,ss,83,84 for each single-qubit error, we check the
commutation relation between the error £ and each stabilizer generator S;. The syndrome
bit s; is set to:

)0 if[E,S]=0 (commute)
|1 if{E, S} =0 (anticommute)

Example:

Error X, ® I, ® I3 ® I ® I5: This error anti-commutes with only S;. This results in the
syndrome (0,0,0,1).
The completed table is in Tab 4.
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Error S1 | S2 | S3 | sS4
Xi9L®Iix;®I;| 0| 0] 0|1
LeoX 9L 9LeI; | 10|00
Il®12®X3®]4®]5 1 1 O 0
LRLRXLRKX,®Is| 0] 1|10
LRLILRI®X;| 0|0 |11
Z1LQL®Is | 1 0|10
LR Z,R3 1,15 | 0| 1]0 |1
LHQL®ZsQI,®1I5 | 0] 0| 1]0
LRLRLZR®Z,RI; | 100 |1
LRILRXLRILR®Z; | 0| 1|00

Table 4: Single-Qubit Syndrome Table for the Five-Qubit Code

3d. Explain why this is a correction code with distance d > 3.

Solution:

From the syndrome table, we see that each single-qubit error maps to a unique syndrome.
The number of correctable errors ¢ is given by t = (d — 1)/2. Rearranging this, we find
that d = 3.

3e. Find a pair of X, and Z;, logical operators of weight 3.

Solution:

From 3b. we have two weight-five logical operators: X, = XX X3X4 X5 and Z) =
172737, 75. Any logical operator multipled by a stabiliser is also a logical operator. We
can therefore reduce the weight of our logicals by multiplying by stabilisers. Recall that:
X7 = —iY.

Multiplying 57 = X12573X,15 by X, gives:

Xp = (XnXo X3 XuX5)(X125Z3X415) = —(LY2Y31,X5)

Similarily, multiplying 57 = X1 2,73X,I5 by Z gives:

Zy = (2122232, 75) (X122 Z3X415) = —(Y11213Y, Zs)

The above logical operators have weight d = 3. The distance of the code is therefore
d=3.

10
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3f. What are the [[n, k, d]] parameters of this code?

Solution: The number of physical qubits is n = 5. From 3a, £k = 1. From 3e., d = 3.
The code paramters are therefore [[n =5,k =1,d = 3]].

Problem 4: The Surface Code

4a. Figure 2 shows the Tanner graph for a surface code defined over 5 qubits. List the four
stabiliser generators that are measured by this code.

q1 Ss3 q2

S1 g5 Sa
(N
\_/
|
1
q3 1Sy q4

Figure 2: The five-qubit surface code. Dashed edges denote Z-type checks and solid edges
X-type checks

Solution: The stabilisers of this code are:

Sl — X1X3X5
Sy = XX, X5
Sy = 7,775
Sy = ZsZ4 75

4b. How many logical qubits does this code encode?

Solution: There are four stabiliser generators, |S| = 4. The logical qubit count is
therefore k =n —|S|=5—-4=1.

4c. This code has distance d = 2. Find the logical operator pair 7, X .

11
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Solution: In the surface code, logical operators span from edge-to-edge. The following
is choice of logical operators:

Xp = X1Xp
ZL = leg

It is straightforward to verify that these logical operators commute with the stabilisers
and anti-commute with another. An alternative choice of logical operators is:

X = X3Xy
Zy = ZyZy

4d. Explain why this code is a detection code and not a correction code.

Solution: This code is a detection code as it has distance d = 2. The number of
correctable errors t is given by the expression ¢t = (d — 1)/2. As such, any correction code
must have d > 3.

4e. What are the [[n, k, d]] parameters of this code?

Solution: The number of physical qubits n = 5, the logical qubit count is £ = 1 and
d = 2. The code has parameters [[5, 1, 2]].

4f.  Figure 3 shows the Tanner graph for a distance-4 surface code. Two X-errors have
occurred on qubits ¢go9 and gg activating a non-zero syndrome measurement for stabilisers Sy7
and Spg. Explain why R = X5X50 and R’ = X;0X3; are both suitable recovery operations.

12
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Figure 3: The distance-4 surface code. Dashed edges denote Z-type checks and solid edges

X-type checks.

Solution: The original error is £ = XgX59. The determine whether or not our recovery
operation is successful we first calculate the residual error. For the first recovery operation
R is this given by:

R=RE=1€cS8

which is in the stabiliser group. For the second recovery R’ the residual error is:

R =R'E = XeX10X20X21 € S

This residual is equivalent to a stabiliser as it is equal to the operator measured by
generator Sg.

4g. The recovery operator R” = X7 XgXg would also reset the total syndrome of the surface
code. Explain why this is not a suitable recovery operator.

13



Joschka Roffe . IQC 2024-25
Jakub Adamski Tutorial 9 November 28, 2024

Solution: The residual error for this recovery would be:

R” - R”E - X6X7X8X9X2() € ﬁ

This represents a chain of X-type Pauli operators spanning from the left edge of the
surface code to the right edge. Error chains of this type are equivalent to X logical
operators. The recovery operator R” would therefore change the logical information
encoded by the code.

14



