

Introduction to Quantum Computing

Lecture 10: Partial measurements

Raul Garcia-Patron Sanchez

Projectors on computational basis Definition of projectors • Projector on computational basis state $|x\rangle$ $P_S^2 = P_S$ $\bigcirc |0\rangle\langle 0| \equiv \begin{vmatrix} 1\\0 \end{vmatrix} \times \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{vmatrix} 1 & 0\\0 & 0 \end{vmatrix}$ $\bigcirc |1\rangle\langle 1| \equiv \begin{bmatrix} 0\\1 \end{bmatrix} \times \begin{bmatrix} 0&1 \end{bmatrix} = \begin{bmatrix} 0&0\\0&1 \end{bmatrix}$ $|\psi\rangle$ $P_{0}|\psi\rangle = \frac{1}{2} \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} \psi_{0} \\ \psi_{1} \end{vmatrix} = \begin{vmatrix} \psi_{0} \\ 0 \end{vmatrix} = \psi_{0} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \psi_{0}|0\rangle$ $P_0|\psi\rangle = \langle 0|\psi\rangle|0\rangle = \psi_0|0\rangle$ • Projector on $|-\rangle$ $P_{|-\rangle} = |-\rangle\langle -| \equiv \begin{vmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{vmatrix} \times \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = \frac{1}{2} \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}$ \bigcirc $P_{|-\rangle}|\psi\rangle = \frac{1}{2} \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} \begin{vmatrix} \psi_0 \\ \psi_1 \end{vmatrix} = \frac{\psi_0 - \psi_1}{\sqrt{2}} \begin{vmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{vmatrix} = \frac{\psi_0 - \psi_1}{\sqrt{2}} \begin{vmatrix} 0 \\ -1/\sqrt{2} \end{vmatrix}$ \bigcirc

 $|0\rangle$

Projectors on quantum states

$$(|u\rangle\langle u|)|\psi\rangle = |u\rangle \underbrace{\langle u|\psi\rangle}_{\in\mathbb{C}} = \langle u|\psi\rangle|u\rangle = \psi_u|u\rangle$$

$$P_u|\psi\rangle = \langle u|\psi\rangle|u\rangle = \psi_u|u\rangle$$

$$|u\rangle$$

$$(|u
angle\langle u|)|v
angle = \sum_{j} u_{i}u_{j}^{*}v_{j} = u_{i}(\sum_{j} u_{j}^{*}v_{j}) = u_{i}\langle u|v
angle$$

•
$$P_{\mathcal{S}}^2 = P_{\mathcal{S}}$$

 $(|u\rangle\langle u|)|u\rangle\langle u| = |u\rangle\langle u|$

•
$$P_{\mathcal{S}}^{\dagger} = P_{\mathcal{S}}$$

$$(|u\rangle\langle u|)^{\dagger} = |u\rangle\langle u|$$

In this course

Self-adjoint Projectors
$$P_{\mathcal{S}}^2 = P_{\mathcal{S}} = P_{\mathcal{S}}^\dagger$$

Revisiting basis measurements

Any orthonormal basis $\{|v_i\rangle\}$ that span \mathcal{H} has and associated measurement d-1Satisfying a completeness relation: $\sum |v_i\rangle\langle v_i| = I_d$ i=0 $P_i = |v_i\rangle \langle v_i|$ are projectors on the states of the basis Probability of outcome *i* reads: $P(i) = ||P_i|\psi\rangle||^2 = |\langle v_i|\psi\rangle|^2$ $|\psi\rangle$ The quantum state is updated to $\frac{P_i|\psi\rangle}{||P_i|\psi\rangle||} = \frac{\langle v_i|\psi\rangle}{||P_i|\psi\rangle||}|v_i\rangle = e^{i\phi}|v_i\rangle$ $P_i|\psi\rangle = \langle v_i|\psi\rangle |v_i\rangle$ v_i

Example:+/- basis

 $\mathcal{H}_{\mathcal{Q}} = \operatorname{Span}\{|+\rangle, |-\rangle\}$

• Completness:
$$|+\rangle\langle+|+|-\rangle\langle-|\equiv \frac{1}{2}\begin{bmatrix}1&1\\1&1\end{bmatrix}+\frac{1}{2}\begin{bmatrix}1&-1\\-1&1\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}\equiv I_{2}$$

• $|\psi\rangle$
 $|\psi\rangle = \psi_{0}|0\rangle + \psi_{1}|1\rangle$
 $P(-) = ||P|_{-\rangle}|\psi\rangle||^{2}$ Updated state: $\frac{P_{|-\rangle}|\psi\rangle}{||P|_{-\rangle}|\psi\rangle||}$
 $P_{|-\rangle} = |-\rangle\langle-|\equiv \begin{bmatrix}1/\sqrt{2}\\-1/\sqrt{2}\end{bmatrix} \times [1/\sqrt{2} - 1/\sqrt{2}] = \frac{1}{2}\begin{bmatrix}1&-1\\-1&1\end{bmatrix}$
 $P_{|-\rangle}|\psi\rangle = \frac{1}{2}\begin{bmatrix}1&-1\\-1&1\end{bmatrix}\begin{bmatrix}\psi_{0}\\\psi_{1}\end{bmatrix} = \frac{\psi_{0}-\psi_{1}}{\sqrt{2}}\begin{bmatrix}1/\sqrt{2}\\-1/\sqrt{2}\end{bmatrix} = \frac{\psi_{0}-\psi_{1}}{\sqrt{2}}|-\rangle$
 $P(-) = |\psi_{0}-\psi_{1}|^{2}/2$ Updated state: $|-\rangle$

Global phase

The quantum state is updated to

$$\frac{P_i|\psi\rangle}{||P_i|\psi\rangle||} = \frac{\langle v_i|\psi\rangle}{||P_i|\psi\rangle||}|v_i\rangle = e^{i\phi}|v_i\rangle$$
• Define a state up to a global phase: $|\tilde{\psi}\rangle \equiv e^{i\varphi}|\psi\rangle$

Output probability: $P(i) = ||P_i|\tilde{\psi}\rangle||^2 = |e^{i\varphi}\langle v_i|\psi\rangle|^2 = |\langle v_i|\psi\rangle|^2$

 $|\psi
angle$

 $|v_i\rangle$

Projectors on basis states are rank-1 projectors

Composition of measurement: computational basis

• Let's x encode the outcome of n bits

x

 $|\psi
angle$

$$egin{aligned} &|x
angle = |x_1
angle \otimes |x_2
angle \otimes \otimes |x_n
angle \ &P_x = |x
angle \langle x| = |x_1
angle \langle x_1| \otimes \otimes |x_n
angle \langle x_n| \ &P(x) = ||P_x|\psi
angle ||^2 = |\langle x|\psi
angle |^2 \ & ext{Update:} \ rac{P_x|\psi
angle}{||P_x|\psi
angle ||} = rac{\psi_x}{|\psi_x|} |x
angle = e^{i\phi} |x
angle \ &x|\psi
angle |^2 = |\langle x| \ \sum_{u=1}^{n} |\psi_u|y
angle |^2 = |\psi_u|^2 \end{aligned}$$

 $y \in \{0,1\}^n$

General multi-qubit basis measurement

$$|\Phi^{\pm}\rangle\langle\Phi^{\pm}| = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & \pm 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \pm 1 & 0 & 0 & 1 \end{bmatrix} \qquad |\Psi^{\pm}\rangle\langle\Psi^{\pm}| = \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & \pm 1 \\ 0 & \pm 1 \end{bmatrix}$$

Projectors on subspaces

Projector on subspace

• Projectors on a 1-dim vector subspace: $P_i = |v_i\rangle\langle v_i|$

• Projector on vector subspace S of dim $k (S \subset H)$:

• Being a vector space, S has an orthonormal basis $\{|u_i\}_{i=0}^{k-1}$

•
$$P_{\mathcal{S}} = \sum_{i=0}^{k-1} |u_i\rangle \langle u_i|$$

• $P_{\mathcal{S}}^2 = P_{\mathcal{S}}$

•
$$P_{\mathcal{S}}^{\dagger} = P_{\mathcal{S}}$$

$$P_{\mathcal{S}}^2 = P_{\mathcal{S}} = P_{\mathcal{S}}^\dagger$$

Projective measurement

A projective measurement consist of a set of projectors P_i Satisfying a completeness relation: $\sum P_i = I_d$ Satisfy orthogonal relation: $P_m P_n = \delta_{n,m} P_m$ $|\psi\rangle$ Probability of outcome *i* reads: $P(i) = ||P_i|\psi\rangle||^2$ The quantum state is updated to $P_i|\psi$ $P_i |\psi\rangle$ $|P_i|\psi\rangle|$

A degenerate 3 dimensional quantum system

Projective measurement

Completeness relation

$$\sum_{i=0}^{\cdot} P_l = I_d$$

Completeness implies probabilities add to 1:

$$\sum_{i} P(i) = \sum_{i} ||P_{i}|\psi\rangle||^{2}$$
$$= \sum_{i} \langle \psi |P_{i}^{\dagger}P_{i}|\psi\rangle = \langle \psi |\sum_{i} P_{i}^{\dagger}P_{i}|\psi\rangle$$
$$= \langle \psi |\sum_{i} P_{i}|\psi\rangle = \langle \psi |\psi\rangle = 1$$

We use:

• $P(i) = ||P_i|\psi\rangle||^2$

• Linearity

•
$$P_{\mathcal{S}}^2 = P_{\mathcal{S}} = P_{\mathcal{S}}^{\dagger}$$

• Repeating the same measurement immediately after, gives the same answer. Results from: $P_i^2 = P_i$

Partial measurement

na uranon gunnanan IN FORMATICI FORUM

Subsystem measurement

 $\tilde{P}_0 = I \otimes I \otimes \ldots \otimes |0\rangle \langle 0|$ $\tilde{P}_1 = I \otimes I \otimes \ldots \otimes |1\rangle \langle 1|$ $\tilde{P}_0 + \tilde{P}_1 = I_{\mathcal{H}^{\otimes n}}$ $\sum c_i(A_i \otimes C) = (\sum c_i A_i) \otimes C$ $|\psi\rangle$ $P_i|\psi\rangle$ $| ilde{\psi}_i
angle\otimes|i
angle$

Two qubit example

 $\tilde{P}_{0} = I \otimes |0\rangle \langle 0|$ $\tilde{P}_{1} = I \otimes |1\rangle \langle 1|$ $\tilde{P}_{0} + \tilde{P}_{1} = I$

$|\psi\rangle = \psi_{00}|0\rangle \otimes |0\rangle + \psi_{01}|0\rangle \otimes |1\rangle + \psi_{10}|1\rangle \otimes |0\rangle + \psi_{11}|1\rangle \otimes |1\rangle$

$$\begin{split} \tilde{P}_{0}|i\rangle \otimes |0\rangle &= (I \otimes |0\rangle\langle 0|)(|i\rangle \otimes |0\rangle) = I|i\rangle \otimes |0\rangle \underbrace{\langle 0|0\rangle}_{=1} = |i\rangle \otimes |0\rangle \\ \tilde{P}_{0}|i\rangle \otimes |1\rangle &= (I \otimes |0\rangle\langle 0|)(|i\rangle \otimes |1\rangle) = I|i\rangle \otimes |0\rangle \underbrace{\langle 0|1\rangle}_{=0} = 0 \\ \tilde{P}_{0}|\psi\rangle &= \psi_{00}|0\rangle \otimes |0\rangle + \psi_{10}|1\rangle \otimes |0\rangle = (\psi_{00}|0\rangle + \psi_{10}|1\rangle) \otimes |0\rangle \end{split}$$

Two qubit example

$$\begin{split} \tilde{P}_0 &= I \otimes |0\rangle \langle 0| \\ \tilde{P}_1 &= I \otimes |1\rangle \langle 1| \\ \tilde{P}_0 &+ \tilde{P}_1 = I \end{split}$$

$$|\psi\rangle = \psi_{00}|0\rangle \otimes |0\rangle + \psi_{01}|0\rangle \otimes |1\rangle + \psi_{10}|1\rangle \otimes |0\rangle + \psi_{11}|1\rangle \otimes |1\rangle$$

$$\begin{split} \tilde{P}_{0}|\psi\rangle &= \psi_{00}|0\rangle \otimes |0\rangle + \psi_{10}|1\rangle \otimes |0\rangle = (\psi_{00}|0\rangle + \psi_{10}|1\rangle) \otimes |0\rangle \\ ||\tilde{P}_{0}|\psi\rangle||^{2} &= |\psi_{0,0}|^{2} + |\psi_{1,0}|^{2} \\ \frac{\tilde{P}_{0}|\psi\rangle}{||\tilde{P}_{0}|\psi\rangle||} &= \frac{1}{\sqrt{|\psi_{00}|^{2} + |\psi_{01}|^{2}}} \left(\psi_{00}|0\rangle + \psi_{10}|1\rangle\right) \otimes |0\rangle = |\tilde{\psi}_{0}\rangle \otimes |0\rangle \end{split}$$

Two registers example

Two register of n and m qubits respectively :

 $ilde{P}_y = I \otimes |y
angle \langle y| \ \sum P_y = I_{\mathcal{H}^{\otimes n}}$ $y \in \{0,1\}^n$

$$\begin{split} \tilde{P}_{y}|\psi\rangle &= \left(\sum_{x}\psi_{x,y}|x\rangle\right)\otimes|y\rangle \qquad ||\tilde{P}_{y}|\psi\rangle||^{2} = \sum_{x}|\psi_{x,y}|^{2} \\ \frac{\tilde{P}_{y}|\psi\rangle}{||\tilde{P}_{y}|\psi\rangle||} &= \frac{1}{\sqrt{\sum_{x}\psi_{x,y}}}\left(\sum_{x}\psi_{x,y}|x\rangle\right)\otimes|y\rangle = |\tilde{\psi}_{y}\rangle\otimes|y\rangle \end{split}$$

References

Reading references

- 1. Adjoints and Hermitian operators NC 2.1.6
- 2. Projective measurement NC 2.2.5 (notation different from the course)
- 3. What is a phase? NC 2.2.7
- 4. Composite system and measurement NC 2.2.8

 $NC \equiv Michael Nielsen and Isaac Chuang, Quantum Computing and Quantum Information Cambridge University Press (2010)$