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This Lecture

1 Noisy Intermediate Scale Quantum Devices and
Near-Term Quantum Algorithms

2 Variational Quantum Algorithms: What & How (4 steps)

3 Step 1: Hamiltonian Problem with an Example (Max-Cut)
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Part I

Noisy Intermediate Scale Quantum Devices and

Near-Term Quantum Algorithms
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NISQ Devices: Limitations

Noisy Intermediate-Scale Quantum (NISQ) Devices

Qubit Number

Number of qubits a processor have (width of computation)

Gate Fidelity

Quality of quantum gates

Coherence Time

Time that quantum information can be stored
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NISQ Devices: Limitations

Quantum Error Correction not possible (too few qubits)

Fault Tolerant Quantum Computation not in “Near-Term”

Quality of output deteriorates with the size (width), number
of gates applied, depth of computation (time taken)

Architecture topology is important

Nearest-neighbour interaction leads to more physical gates to
implement a computation than all-to-all connectivity

Beyond a point output is random

Even before that point output offers no longer an advantage
to classical methods

Main Question:

Can NISQ devices offer computational advantage and how?
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NISQ Devices: Where we are

Superconducting hardware

Number of Qubits: ≈ 100 (IBM’s “Osprey” has 433 and plans
to announce by the end of the year “Condor” with 1121
qubits)

Circuit depth: ≈ 100 : 20 cycles of 5 gates

Quality of gates (a bit outdated):

1-qubit gate error: 1.6× 10−3

2-qubit gate error: 6.2× 10−3

Measurement error: 3.2× 10−2

From “Quantum supremacy using a programmable superconducting processor”, Frank Arute, Kunal Arya, [· · · ],
John M. Martinis, Nature volume 574, 505 (2019)
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NISQ Devices: An approach towards quantum advantage

Use of Hybrid Quantum - Classical Algorithms

Move big part of the computation to the classical devices

Use of QC for specific subroutine that is (classically)
computationally expensive

Quantum part can be completed with NISQ devices

Possibly using multiple repetitions, each requiring small
coherence time

Can find a “quantum” solution to any problem:

Take a classical algorithm for the problem and replace
expensive subroutines with quantum ones

Heuristics with potential speed-ups

(to be examined case-by-case)
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Part II

Variational Quantum Algorithms: What & How (4 steps)
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VQA: The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy”)

There exist variations:

Find the minimum eigenvector (called “ground state”)

Find other eigenvalues or eigenvectors

Find the expectation value (“energy”) of a quantum state |ψ⟩

⟨ψ|H |ψ⟩

How to use this to solve everyday problems?
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k-local Hamiltonian problem is QMA-complete

QMA: class of problems that they can be verified in poly-time
by a quantum computer

QMA is to BQP, what NP is to P

QMA contains both BQP and NP

The k-local Hamiltonian problem is:

Find the ground state energy of a Hamiltonian H =
∑

i Hi

where each Hi acts on at most k-qubits.

This is QMA-complete! (similar to k − SAT)

We can use VQA to solve all problems in NP and BQP!

But is it really practical? (not always: time, prob of success)
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Applications: Why is this task useful

Optimisation

Quantum Chemistry

Quantum Simulation

Many-body Physics

Quantum Machine Learning
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VQA: four steps

Step 1 Hamiltonian Encoding

Express your desired problem as the ground state of a suitable
qubit-Hamiltonian H

Step 2 Energy estimation (the only quantum part)

Given copies of a state |ψ⟩, estimate its energy ⟨ψ|H |ψ⟩
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VQA: four steps

Step 3 Choice of Ansatz

A family of parametrised quantum states |ψ(θ⃗)⟩ where one of
its members approximates best the ground state

Step 4 Classical optimiser

A classical optimiser that finds the values θ⃗∗ that minimise
the cost C (θ⃗) := ⟨ψ(θ⃗)|H |ψ(θ⃗)⟩, ie θ⃗∗ := argmin

θ⃗
C (θ⃗)
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Part III

Step 1: Hamiltonian Problem with an Example (Max-Cut)
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The Max-Cut Problem

Given Graph G = (V ,E )

with vertices v ∈ V and edges e = (v1, v2) ∈ E

Partition vertices to two sets S ,T

where S ∪ T = V and S ∩ T = ∅

Cut is the number of edges between the two sets S ,T

(# of red edges)
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The Max-Cut Problem

Task: Select S ,T such that the Cut is maximised

max
(S ,T )

#(s, t) ∈ E | s ∈ S ∧ t ∈ T

Decision version of Max-Cut is NP-complete

Max(Min)-Cut has applications in Flow Networks including
circuit optimisation (VLSI design), computer vision and others

Version that edges have a weight we and one maximises the
total weight of the cut edges exists (similar analysis):

max
(S ,T )

∑
(s,t)

w(s,t) | (s, t) ∈ E ∧ s ∈ S ∧ t ∈ T
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Towards a Quantum Solution for Max-Cut

Need to use our tool (ground state energy of a Hamiltonian)

In general one can take any classical algorithm that solves
Max-Cut and replace an expensive sub-routine with a
Hamiltonian problem

Natural map of this problem to a (simple) Hamiltonian

Assign to each vertex v a spin sv ∈ {+1,−1}

Those with si = +1 define the one set (say S) those with
si = −1 define the other set (say T )
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Towards a Quantum Solution for Max-Cut

Consider the cost H(s⃗) (energy) of a configuration
s⃗ := (s1, · · · , sn)

Split the edges to three sets:

E+1 edges between vertices that both have s = +1

E−1 edges between vertices that both have s = −1

EC edges between vertices with different spins (the “cut”)

H(s⃗) =
∑

(i ,j)∈E(G)

si sj (1)

=
∑

(i ,j)∈E+1(G)

si sj +
∑

(i ,j)∈E−1(G)

si sj +
∑

(i ,j)∈EC (G)

si sj
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Towards a Quantum Solution for Max-Cut

Note that si sj = 1 for E+1,E−1 while si sj = −1 for EC :

H(s⃗) =
∑

(i ,j)∈E+1(G)

1 +
∑

(i ,j)∈E−1(G)

1−
∑

(i ,j)∈EC (G)

1

=
∑

(i ,j)∈E+1(G)

+
∑

(i ,j)∈E−1(G)

+
∑

(i ,j)∈EC (G)

1− 2
∑

(i ,j)∈EC (G)

1

=
∑

(i ,j)∈E(G)

−2
∑

(i ,j)∈EC (G)

= |E | − 2Cut(G ) (2)

The greater the Cut(G ) the smaller the energy H(s⃗)

Minimising Energy = Solving Max-Cut!
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Towards a Quantum Solution for Max-Cut

Map each spin si to a qubit |xi ⟩, where +1 → |0⟩ ; −1 → |1⟩

The cost function (Hamiltonian) changes
H(s⃗) =

∑
(i ,j)∈E si sj → H(x⃗) :=

∑
(i ,j)∈E (−1)xi+xj

→ Ĥ(x⃗) :=
∑

(i ,j)∈E Zi ⊗ Zj

Check: For each edge (i , j) ∈ E we have
Zi ⊗ Zj |xi ⟩ ⊗ |xj⟩ = (−1)xi+xj |xi ⟩ ⊗ |xj⟩

As earlier, if edge of same type → even parity there a +1
contribution (comp states remain invariant)

If edge of different type (i.e. counts in “cut”) → odd parity
and contributes as −1 (comp states remain invariant)

Taking all terms together:∑
(i ,j)∈E Zi ⊗ Zj |x1 · · · xn⟩ = (|E | − 2Cut(G )) |x1 · · · xn⟩
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Towards a Quantum Solution for Max-Cut

The smallest eigenvalue of Ĥ(x⃗) gives the maximum Cut(G )

Special case of an Ising Hamiltonian (important class)

H(x⃗) = −
∑

(i ,j) JijZi ⊗ Zj − µ
∑

i hiZi

Ising formulations of many NP problems, A. Lukas, Frontiers in Physics 2 (2014): 5.

We want to find |x⃗⟩ that minimises this Hamiltonian

Next Lecture:

How to compute the cost/energy of a quantum state
C (ψ) := ⟨ψ|H |ψ⟩

How to approximate the minimum without brute-forcing the
full Hilbert space
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