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@ Step 2: How to Measure the Energy/Cost
@ Step 3: The Ansatz (Family of Quantum States)

© Step 4: Classical Optimisation & VQA Summary
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Step 2: How to Measure the Energy/Cost
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Previously in VQA

The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy")
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Previously in VQA

The Mathematical Task

Given a Hermitian matrix H (typically called Hamiltonian),
compute its smallest eigenvalue (called “ground state energy")

Why is it relevant?

@ Can solve it using VQA that is suitable for NISQ devices

@ k-local Hamiltonian problem is QMA-complete
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Previously in VQA: the four steps

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable
qubit-Hamiltonian H
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Previously in VQA: the four steps

Step 1 Hamiltonian Encoding (Previous Lecture)

Express your desired problem as the ground state of a suitable
qubit-Hamiltonian H

Step 2 Energy estimation (the only quantum part)
Given copies of a state |1)), estimate its energy (| H |1))
Step 3 Choice of Ansatz

-

A family of parametrised quantum states |¢)(#)) where one of
its members approximates best the ground state

Step 4 Classical optimiser

A classical oPtimiser Ehat finds_’the vaLues 0% that minir_r)ise
the cost C(0) := ((0)| H [1(0)), ie 0* := arg minz C(0)
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Step 2: Energy Estimation

Given:

@ An efficient, NISQ compatible, description to generate an
n-qubit quantum state [¢))

@ An n-qubit Hamiltonian
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Step 2: Energy Estimation

Given:

@ An efficient, NISQ compatible, description to generate an
n-qubit quantum state [¢))

@ An n-qubit Hamiltonian

Task: Estimate the energy E(¢)) := (| H |[))
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Step 2: Energy Estimation

Given:

@ An efficient, NISQ compatible, description to generate an
n-qubit quantum state [¢))

@ An n-qubit Hamiltonian

Task: Estimate the energy E(¢)) := (| H |[))

© Decompose the Hamiltonian to sum of Pauli observables
@ Generate multiple copies of [1)
© Measure each Pauli suff times to get desired accuracy

© Combine above to get an estimate for the energy E(v))
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Decompose Hamiltonian to local Pauli observables

o Pauli observables can be measured locally and easily
@ Frequently the Hamiltonian is already as sum of Pauli’s
E.g. Ising Hamiltonians
H=— Z(,-J) JiZi® Zj — Y hiZ;

@ Other decompositions of the Hamiltonian to simple local
obervables can and have been considered (not here)
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Decompose Hamiltonian to local Pauli observables

@ Any n-qubit Hermitian operator can be written as sum of
products of Pauli matrices P; € {/, X, Y, Z}
(is orthonormal basis — Pauli observ: {+1,—1} eigenvalues)

H=Y c.,Pro P}
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Decompose Hamiltonian to local Pauli observables

@ Any n-qubit Hermitian operator can be written as sum of
products of Pauli matrices P; € {/, X, Y, Z}
(is orthonormal basis — Pauli observ: {+1,—1} eigenvalues)

H=> i@ @P]
@ Practically, in many cases it is given in this form or in a

similar form where one needs to decompose some fixed
two-qubit gates (AX, AZ, etc) in Pauli's
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Decompose Hamiltonian to local Pauli observables

@ Any n-qubit Hermitian operator can be written as sum of
products of Pauli matrices P; € {/, X, Y, Z}
(is orthonormal basis — Pauli observ: {+1,—1} eigenvalues)

H=Y c.,Pro P}

@ Practically, in many cases it is given in this form or in a
similar form where one needs to decompose some fixed
two-qubit gates (AX, AZ, etc) in Pauli's

@ To compute coefficients ¢;, ... ; use the inner product

n

(Al
(A, B) ;:T(ZAHB)

iy i = (P @ - @ Pl H)

sIn
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Decompose Hamiltonian to local Pauli observables

Example:

1 1
_ L ; o
Decompose H = 75 (1 1> in Pauli's

H=al+BX+~Y +6Z
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Decompose Hamiltonian to local Pauli observables

Example:
5

1 1Y), .
Decompose H = 75 1> in Pauli's

1
H=al+BX+~Y +6Z

. (X, H)=8=12/2
. (ZH)=6=/2/2
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Decompose Hamiltonian to local Pauli observables

Example:
D H=->1 L1y, Pauli’
ecompose H = 5 (| | in Pauli’s

H=al+BX+~Y +6Z

(LHY=a=0 ; (X,H)=8=1v2/2
(Y, Hy=y=0 ; (Z,H)=6=+2/2

As expected

H:\z(x+2):\2<(g (1)>+<(1) 01>>
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Decompose Hamiltonian to local Pauli observables

Example:
D H=->1 L1y, Pauli’
ecompose H = 5 (| | in Pauli’s

H=al+BX+~Y +6Z

. (X, H)=8=12/2
. (ZH)=6=/2/2

As expected

H:\z(x+2):\2<(g (1)>+<(1) 01>>

@ Other example (check)

N=-(IN+I0Z2+Zx]-2Z237Z)
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Estimating the value of Pauli observables (¢)| P |v)

@ Prepare-and-measure the state NV times
e Each outcome gives a value O; € {+1, -1}
@ Output (O) =), O;/N for the value of the observable
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Estimating the value of Pauli observables (¢)| P |v)

@ Prepare-and-measure the state NV times
e Each outcome gives a value O; € {+1, -1}
@ Output (O) =), O;/N for the value of the observable

o If we require accuracy of our estimate ¢ with § confidence:

v ohior (1)
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Estimating the value of Pauli observables (¢)| P |v)

@ Prepare-and-measure the state NV times
e Each outcome gives a value O; € {+1, -1}
@ Output (O) =), O;/N for the value of the observable

o If we require accuracy of our estimate ¢ with § confidence:

v ohior (1)

e By Hoeffding (and Chernoff) inequalities we know:

Pr(|0 — (0)]| > ¢) < e N¢

Probability that the true expectation differs by ¢ or more from
the measured one

@ If we require that this probability is also bounded by
§ = e N our confidence, we get above expression
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Implications of the accuracy

@ Note that the resources required depend on the problem

e NP-complete problems (or even worse QMA-complete)
cannot be solved in poly-time with a quantum computer

@ Problems outside BQP have negligible “energy gap”, i.e. the
ground state differs from the next eigenvalue (1st excited
state) by a very small amount

@ To achieve accuracy that distinguishes between the two,
one needs super-polynomial repetitions
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Implications of the accuracy

Note that the resources required depend on the problem

NP-complete problems (or even worse QMA-complete)
cannot be solved in poly-time with a quantum computer

Problems outside BQP have negligible “energy gap”, i.e. the
ground state differs from the next eigenvalue (1st excited
state) by a very small amount

To achieve accuracy that distinguishes between the two,
one needs super-polynomial repetitions

High accuracy is also required:
To move in a hyper-parametrised space
(where gradients are negligible)

To overcome the effects of noise and determine truly the
direction in the parameter space to move.
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Computing the Energy E(v))

@ Using the Pauli decomposition we have:
E@W) = (W H[6) = X Gy (6] PR @ -~ @ Pl 1)

where ()| PI @ - @ Pl |1)) are the Pauli observables we
estimated earlier
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Computing the Energy E(v))

@ Using the Pauli decomposition we have:
E@W) = (W H[6) = X Gy (6] PR @ -~ @ Pl 1)

where ()| PI @ - @ Pl |1)) are the Pauli observables we
estimated earlier

@ The accuracy of the energy estimate depends on the accuracy
of individual terms, and the number of terms in the sum

)

@ We will use this value as the “cost” of the state
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Computing the Energy E(v))

Using the Pauli decomposition we have:
E@W) = (W H[6) = X Gy (6] PR @ -~ @ Pl 1)

where ()| PI @ - @ Pl |1)) are the Pauli observables we
estimated earlier

The accuracy of the energy estimate depends on the accuracy
of individual terms, and the number of terms in the sum

)

For the earlier example: H = % (X 4 Z) we need to estimate
two observables:

(WX [6) = 01 ; (4] Z[w) = O

Resulting to E(v)) = % (01 + 02)

We will use this value as the “cost” of the state
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Part Il

Step 3: The Ansatz (Family of Quantum States)
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Ansatz: The space we optimise

@ To solve the Hamiltonian problem we need to find the
quantum state that has minimum energy from all the states
of the Hilbert space

@ This is infeasible. Instead, we select a family of
(parametrised) quantum states, and we hope that one
member of the family approx. well the ground state.
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Ansatz: The space we optimise

@ To solve the Hamiltonian problem we need to find the
quantum state that has minimum energy from all the states
of the Hilbert space

@ This is infeasible. Instead, we select a family of
(parametrised) quantum states, and we hope that one
member of the family approx. well the ground state.

@ Can view the ansatz as a family of parametrised quantum

circuits: [¢(6)) = U(6) |0)

—

@ The circuits U(6) should be NISQ devices compatible (short
depth, limited width)
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Ansatz: The space we optimise

@ To solve the Hamiltonian problem we need to find the
quantum state that has minimum energy from all the states
of the Hilbert space

@ This is infeasible. Instead, we select a family of
(parametrised) quantum states, and we hope that one
member of the family approx. well the ground state.

@ Can view the ansatz as a family of parametrised quantum

circuits: [¢(6)) = U(6) |0)

—

@ The circuits U(6) should be NISQ devices compatible (short
depth, limited width)

e Two approaches: (i) Hardware Efficient, (ii) Problem Specific
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(i) Hardware Efficient Ansatz

@ Generate a family of states that spans evenly the Hilbert space
@ Needs to be able to produced high entanglement

@ Should choose circuits that are easy to implement with a
given NISQ device

@ Generic Ansatz that can be used for any Hamiltonian problem
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(i) Hardware Efficient Ansatz

@ Generate a family of states that spans evenly the Hilbert space

Needs to be able to produced high entanglement

@ Should choose circuits that are easy to implement with a
given NISQ device

Generic Ansatz that can be used for any Hamiltonian problem

Typical Ansatz:
1 A number of layers repeating the same circuit with different
parameters
2 Single-qubit rotations parametrised by the rotation angle
3 Entangling gates (non-commuting with the rotations)

Hardware architecture determines entanglement topology
(all-to-all Vs nearest-neighbour)

Petros Wallden Lecture 22: Variational Quantum Algorithms Il



(i) Hardware Efficient Ansatz

An Example: 3-qubit, 1-layer, all-to-all entanglement

0 := (61,62,03, 064,05, 0)

|0) R(61) R(64)
0) R(62) R(65) w(9)
|0) R(6s) R(6s)
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(ii) Problem Specific Ansatz

o Generate a family of states that uses the problem’s
Hamiltonian

@ Does not span evenly the Hilbert space — hopefully is more
dense around the region we expect to have the ground state

@ Not designed with the hardware in mind
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(ii) Problem Specific Ansatz

o Generate a family of states that uses the problem’s
Hamiltonian

@ Does not span evenly the Hilbert space — hopefully is more
dense around the region we expect to have the ground state

@ Not designed with the hardware in mind

@ Is theoretically more promising, but in practice may lead to
more noisy results

e Many families exist (e.g. unitary coupled cluster, adiabatic,
etc).
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(ii) Problem Specific Ansatz

o Generate a family of states that uses the problem’s
Hamiltonian

@ Does not span evenly the Hilbert space — hopefully is more
dense around the region we expect to have the ground state

@ Not designed with the hardware in mind

@ Is theoretically more promising, but in practice may lead to
more noisy results

e Many families exist (e.g. unitary coupled cluster, adiabatic,
etc).

We give an important type suitable for optimisation problems:

Quantum Approximate Optimisation Algorithm (QAOA)
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Quantum Approximate Optimisation Algorithm

@ Let Hc be the problem’s Hamiltonian of Ising type (only
Pauli-Z, up to quadratic terms)

Recall Max-Cut: He =3 jyep Zi © Z;

o Let Hg = ), X; be the “mixer” Hamiltonian
(non-commuting with Hc¢)
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Quantum Approximate Optimisation Algorithm

@ Let Hc be the problem’s Hamiltonian of Ising type (only
Pauli-Z, up to quadratic terms)

Recall Max-Cut: He =3 jyep Zi © Z;

o Let Hg = ), X; be the “mixer” Hamiltonian
(non-commuting with Hc¢)

o A 1-layer QAOA ansatz is given by
e~ Hs g=ivHc &N |0)@n

@ A single layer has only two parameters (3, ), irrespective of
the number of qubits/width of computation
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Quantum Approximate Optimisation Algorithm

@ The mixer Hamiltonian leads to single-qubit rotations e /"%
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Quantum Approximate Optimisation Algorithm

@ The mixer Hamiltonian leads to single-qubit rotations e /"%

@ The problem Hamiltonian has terms Z; @ Z; leading to

unitaries e 1744

a
"y

R(27)

a
"y
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Quantum Approximate Optimisation Algorithm

@ The mixer Hamiltonian leads to single-qubit rotations e /"%

@ The problem Hamiltonian has terms Z; @ Z; leading to
unitaries e 144

S R(27) D

@ Depending on interaction terms of H¢ entangling gates can
act on distant qubits

@ Problem has to be Ising (i.e. only Pauli Z, and at most
quadratic terms). Other cases can exist but ansatz becomes
much harder to implement.
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Quantum Approximate Optimisation Algorithm

@ The mixer Hamiltonian leads to single-qubit rotations e /"%

@ The problem Hamiltonian has terms Z; @ Z; leading to
unitaries e 144

S R(27) D

@ Depending on interaction terms of H¢ entangling gates can
act on distant qubits

@ Problem has to be Ising (i.e. only Pauli Z, and at most
quadratic terms). Other cases can exist but ansatz becomes
much harder to implement.

e More layers repeat the above with fresh parameters (32, 72)
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Part Il

Step 4: Classical Optimisation & VQA Summary
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Moving Through Parameter Space

Given:

@ Ansatz: set of g-states parametrised by classical parameters ]

— — —

e How to compute the “cost-function” E(0) = (V(0)|H |V (0))
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Moving Through Parameter Space

Given:

@ Ansatz: set of g-states parametrised by classical parameters ]

— — —

e How to compute the “cost-function” E(0) = (V(0)|H |V (0))
Task:

e Find the minimum (local or global).

Can use any classical optimisation technique
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Moving Through Parameter Space

Given:

@ Ansatz: set of g-states parametrised by classical parameters ]

— — —

e How to compute the “cost-function” E(0) = (V(0)|H |V (0))
Task:

e Find the minimum (local or global).

Can use any classical optimisation technique
Examples of Techniques Used:

o Gradient Descent

@ Monte Carlo - based

@ Nelder-Mead method

e COBYLA (Constr. Optimiz. by Linear Approximation)

@ Any deterministic or stochastic global optimisation method
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Gradient Descent

@ Trick to compute the gradient (generalises).
Parametrised gates: Up = e P with P a Pauli
(recall P =1)

Up(0) = I cos() — iPsin(#) ; 5%L#49)::44Pefmp

leading to

0 T
T EO)=E@+ ) - E(0 -
SEO) = E0+T) - E(

Note: This difference is NOT infinitesimal!

NS

)
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Gradient Descent

@ Trick to compute the gradient (generalises).
Parametrised gates: Up = e P with P a Pauli
(recall P =1)

Up(0) = I cos() — iPsin(#) ; 5%L#49)::44Pefmp

leading to

0 T
T EO)=E@+ ) - E(0 -
SEO) = E0+T) - E(

Note: This difference is NOT infinitesimal!

NS

)

@ Move towards negative direction of the gradient:

= —

Ora = 0~ AVE() ; VE@G) = (99 E(9), 0 E(9), 0o E(D) )

e Can find local minima (not global)

Petros Wallden Lecture 22: Variational Quantum Algorithms Il



Monte Carlo - Based

o Initial Guess 0y and compute E(fp)

@ Generate a new guess 0’ (using any method, e.g. by varying a
single parameter) and compute E(¢’)
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Monte Carlo - Based

o Initial Guess 0y and compute E(fp)

@ Generate a new guess 0’ (using any method, e.g. by varying a
single parameter) and compute E(¢’)

o If, E(0') < E(f), keep guess and continue with ; := 0/
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Monte Carlo - Based

o Initial Guess 0y and compute E(fp)

@ Generate a new guess 0’ (using any method, e.g. by varying a
single parameter) and compute E(¢’)

o If, E(0') < E(f), keep guess and continue with ; := 0/

B(E(0")—E(6o))

o Else, with probability p, =1 — e~ , reject guess

(make a fresh guess starting again from 50)

B(E(6")~E(60))

@ With the remaining probability p, = e~ , keep

guess and continue with 61 := 0’
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Monte Carlo - Based

o Initial Guess 0y and compute E(fp)

@ Generate a new guess 0’ (using any method, e.g. by varying a
single parameter) and compute E(¢’)

o If, E(0') < E(f), keep guess and continue with ; := 0/

B(E(0")—E(6o))

o Else, with probability p, =1 — e~ , reject guess

(make a fresh guess starting again from 670)

:3(E(67)—E(‘7o)), keep

@ With the remaining probability p, = e~
guess and continue with 61 := 0’
Observations

e May keep moving with greater new Energy (esc local min)
@ Keeping probability reduces with Energy difference

@ [ is “inverse temperature”. Can increase value with iteration
steps 3(/) (so it stabilises in time)
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e Resources:
- Repetitions per round (accuracy desired)

- Optimisation rounds (classical optimisation problem)
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e Resources:

- Repetitions per round (accuracy desired)

- Optimisation rounds (classical optimisation problem)
o Effect of noise:

- Greater repetitions to achieve desired accuracy

- Potentially systematic errors in estimating cost
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@ Resources:

- Repetitions per round (accuracy desired)

- Optimisation rounds (classical optimisation problem)
o Effect of noise:

- Greater repetitions to achieve desired accuracy

- Potentially systematic errors in estimating cost

o Possible Failures:

- Converge to local minimum

- Fail to conv. (Flat Landscape a.e.) “Barren Plateau”

Petros Wallden Lecture 22: Variational Quantum Algorithms Il



e Resources:

- Repetitions per round (accuracy desired)

- Optimisation rounds (classical optimisation problem)
o Effect of noise:

- Greater repetitions to achieve desired accuracy

- Potentially systematic errors in estimating cost

o Possible Failures:

- Converge to local minimum

- Fail to conv. (Flat Landscape a.e.) “Barren Plateau”
e Overall limitations (heuristics):

- Not exact complexity

- No guarantee for obtaining solution
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VQA Pictorially

-
-
\Yld fermionic problem
B S

qubit Hamiltonian

N
“
H,= E ho Py = § h,,®aj1.
a a j=1

classical cost function

prepare trial state
calculate energy

[2(6))
E=7 ho{¥(0)|Pal¥(8)) 2 Eexact

optimize

classical

adjust parameters

0

measure expectation values
N

(T(0) Qa5 1¥(6))

wnuenb

. *
solution 6

Taken from: Nikolaj Moll et al 2018 Quantum Sci. Technol. 3 030503
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VQA: Summary

e Hybrid Quantum-Classical Algorithms

@ Quantum Part needs small coherence time, works without
QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices
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VQA: Summary

e Hybrid Quantum-Classical Algorithms

@ Quantum Part needs small coherence time, works without
QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

@ Map problem to ground state energy of some Hamiltonian H
(classical)
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VQA: Summary

e Hybrid Quantum-Classical Algorithms

@ Quantum Part needs small coherence time, works without
QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices
@ Map problem to ground state energy of some Hamiltonian H

(classical)

—

@ Can generate (efficiently) a family of states |W(0)) (quantum)

— —

© Can compute expectation value E; = (W(0)| H [W(0)) with
local Pauli measurement for any guess g (quantum)
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VQA: Summary

e Hybrid Quantum-Classical Algorithms

@ Quantum Part needs small coherence time, works without
QECC and can be optimised for given hardware:

Best candidate for quantum speed-up at NISQ devices

@ Map problem to ground state energy of some Hamiltonian H
(classical)

—

@ Can generate (efficiently) a family of states |W(0)) (quantum)

— —

© Can compute expectation value E; = (W(0)| H [W(0)) with
)

local Pauli measurement for any guess 0 (quantum

@ Comparing E(0) of existing points, evaluate a new guess ¢/
using standard techniques.
Feedback to step 2 to evaluate E£(¢’) (classical)
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