Introduction to Quantum Computing Lecture 23: Measurement-Based Quantum Computing (MBQC) I

Petros Wallden

School of Informatics, University of Edinburgh

5th November 2025

This Lecture

Measurement-Based Quantum Computing:

What, Why & How

- **2** The $J(\theta)$ quantum gate
- MBQC as Universal Model of Quantum Computation

Part I

Measurement-Based Quantum Computing:

What, Why & How

MBQC: What (Model of Quantum Computation)

Circuit. Basic mechanism:

- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- Resource Cost: Number of Gates

MBQC: What (Model of Quantum Computation)

Circuit. Basic mechanism:

- Evolve unitarily qubits through a circuit by applying on the qubits the gates one-by-one
- Measure (read-out) at the end to convert quantum information to classical
- Resource Cost: Number of Gates

MBQC. (also known as one-way quantum computer).

Basic mechanism:

- Start with a large (generic) entangled state consisting of multiple qubits
- Make single-qubit measurements in suitably chosen bases (depending on the computation).
 Single-qubit measurements are easy to perform.
- Resource Cost: Entanglement "consumed"

MBQC: Why

- For certain quantum hardware and architectures is easier to implement (e.g. photonic)
- Has alternative ways to treat fault-tolerance and error correction (potentially advantageous)
- Certain applications are easier in MBQC (see later Lecture for crypto related)
- Foundationally a different perspective (e.g. the role of contextuality or certain complexity theoretic implications can be better seen in MBQC).

MBQC: How (The General Idea)

Gate Teleportation.

- Entangle unknown qubit with a fixed qubit
- Measure the unknown qubit

MBQC: How (The General Idea)

Gate Teleportation.

- Entangle unknown qubit with a fixed qubit
- Measure the unknown qubit

Result: The information of the unknown state is "teleported" to the second qubit with an extra gate applied (see later).

MBQC: How (The General Idea)

Gate Teleportation.

- Entangle unknown qubit with a fixed qubit
- Measure the unknown qubit

Result: The information of the unknown state is "teleported" to the second qubit with an extra gate applied (see later).

General MBQC "Ingredients":

- Large entangled quantum state with many qubits (resource state) – "consumed" during the computation.
 Easy to prepare and same for different computations.
- Perform computation by single qubit measurements (easy to implement).

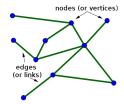
MBQC: What do we need?

- What resource state and what measurements are needed to implement a universal set of gates?
- How to combine those gates for universal computation?
- Does the order of measurements matters? Can we parallelise some of these measurements?
- ullet How to include an (unknown) quantum state $|\psi_0
 angle$ as input?

(Ans: Entangle this state at one side of the resource. Then measure **all** qubits, one-by-one.)

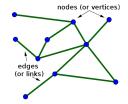
A: Resource States

- Entangled states used are called **graph states**.
- Given graph G = (V, E) with vertices V and edges E



A: Resource States

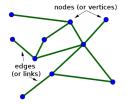
- Entangled states used are called graph states.
- Given graph G = (V, E) with vertices V and edges E



- Place at each vertex a qubit at |+>
- For each edge apply $\land Z$ to entangle the vertices Resulting state: $|G\rangle = \prod_{(a,b)\in E} \land Z^{(a,b)} |+\rangle^{\otimes V}$

A: Resource States

- Entangled states used are called graph states.
- Given graph G = (V, E) with vertices V and edges E



- Place at each vertex a qubit at |+>
- For each edge apply $\land Z$ to entangle the vertices Resulting state: $|G\rangle = \prod_{(a,b)\in E} \land Z^{(a,b)} |+\rangle^{\otimes V}$ Note: $\land Z$'s commute, so order does not matter

Remarks:

- If the graph used is subset of *d*-dimensional lattice the state are also known as **cluster states**.
- Graph states are highly entangled between all qubits.
 Entanglement remains after measuring some qubits
- Entanglement is "consumed" during the computation ⇒
 resource of the computation.

Remarks:

- If the graph used is subset of *d*-dimensional lattice the state are also known as **cluster states**.
- Graph states are highly entangled between all qubits.
 Entanglement remains after measuring some qubits
- Entanglement is "consumed" during the computation ⇒
 resource of the computation.

Is called **one-way quantum computation**, since the resource is consumed during the computation \Rightarrow non-reversible.

B: Measurements

- Single-qubit measurements
 Subscript denotes qubit measured
 Superscript denotes basis of measurement
- Bases used:

$$egin{aligned} M_{j}^{ heta} &= \{\ket{+_{ heta}},\ket{-_{ heta}}\} \text{ for all } heta \text{ and } M_{j}^{ extbf{z}} &= \{\ket{0},\ket{1}\} \end{aligned}$$

$$\text{Recall that } \ket{\pm_{ heta}} &= \frac{1}{\sqrt{2}} (\ket{0} \pm e^{i heta} \ket{1})$$

The role of the Z measurement will be explained later

• Measurements have binary outcome, for qubit j we denote the one outcome $s_j = 0$ and the second $s_j = 1$

- Measurement outcomes are random. To achieve deterministic outcome (unitary), we need to adapt the measurement angles to "cancel" the randomness of previous measurements.
- The (partial) order of measurements and adaptivity will be explored in the next lecture.
- Here we see how to obtain in MBQC the " $J(\theta)$ " universal gate-set, up to certain "corrections"

1 The $|\pm_{\theta}\rangle$ -basis. For all θ we define:

$$\left| { + _{\theta }} \right\rangle = \frac{1}{{\sqrt 2 }}\left({\left| 0 \right\rangle + {e^{i\theta }}\left| 1 \right\rangle } \right),\quad \left| { - _{\theta }} \right\rangle = \frac{1}{{\sqrt 2 }}\left({\left| 0 \right\rangle - {e^{i\theta }}\left| 1 \right\rangle } \right)$$

Note: $\{|+_{\theta}\rangle, |-_{\theta}\rangle\}$ is a basis and $\theta = 0$ is the $|\pm\rangle$ -basis.

$$|0
angle = rac{1}{\sqrt{2}}\left(|+_{ heta}
angle + |-_{ heta}
angle
ight), \;\; |1
angle = rac{1}{\sqrt{2}}e^{-i heta}\left(|+_{ heta}
angle - |-_{ heta}
angle
ight)$$

2 The $J(\theta)$ universal gate-set:

The set of quantum gates $\{ \land Z, J(\theta) \text{ for all } \theta \}$ is universal

2 The $J(\theta)$ universal gate-set:

The set of quantum gates $\{ \land Z, J(\theta) \text{ for all } \theta \}$ is universal

Recall:
$$R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$

We define the Hadamard rotated phase gate:

$$J(\theta) = HR(\theta) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & e^{i\theta} \\ 1 & -e^{i\theta} \end{bmatrix}$$

2 The $J(\theta)$ universal gate-set:

The set of quantum gates $\{ \land Z, J(\theta) \text{ for all } \theta \}$ is universal

Recall:
$$R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$

We define the Hadamard rotated phase gate:

$$J(\theta) = HR(\theta) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & e^{i\theta} \\ 1 & -e^{i\theta} \end{bmatrix}$$

- Any single-qubit unitary gate can be decomposed as:

$$U = J(0)J(\theta_1)J(\theta_2)J(\theta_3)$$

for some $\theta_1, \theta_2, \theta_3$

For universal set we need a two-qubit gate: ∧Z

The $|H\rangle$ maximally entangled state: Recall the controlled-Z gate $(\land Z)$

$$\wedge Z |i\rangle |i\rangle = (-1)^{ij} |i\rangle |i\rangle$$

is symmetric w.r.t. inputs (unlike $\land X |i\rangle |j\rangle = |i\rangle |i \oplus j\rangle$) We define:

$$|H
angle := \wedge Z |+
angle \otimes |+
angle = rac{1}{2} \left(|00
angle + |01
angle + |10
angle - |11
angle
ight)$$

This state is maximally entangled:

$$|H\rangle = \frac{1}{\sqrt{2}}(|0\rangle |+\rangle + |1\rangle |-\rangle) = \frac{1}{\sqrt{2}}(|+\rangle |0\rangle + |-\rangle |1\rangle)$$

$$|H\rangle = (\mathbb{I} \otimes H) |\Phi^{+}\rangle = (H \otimes \mathbb{I}) |\Phi^{+}\rangle = \wedge Z |+\rangle \otimes |+\rangle$$

Note1: $\land Z$ acts on $|+\rangle$'s entangles qubits symmetrically Note2: The $|H\rangle$ is a two-qubit state not to be confused with the Hadamard operator H.

Part II

The $J(\theta)$ quantum gate

Expressing an MBQC computation

It is called "Measurement Pattern"

Resource State:

- A graph with labelled vertices (qubits)
- Set of vertices that are input and output of the computation
 Unless stated otherwise: inputs are on the left-hand side; outputs are on the right-hand side (and are not-measured)

• Measurements:

Angles that each qubit is measured are denoted on the vertex In general, angles need to be adaptively corrected. Denoted angles are the "default" un-corrected ones (see next lecture)

Gate Teleportation: We start with unknown state $|\psi\rangle_1=a\,|0\rangle_1+b\,|1\rangle_1$ plugged in the following MBQC pattern:

$$(|\psi\rangle_1) \qquad (|+\rangle_2)$$
 The $J(-\theta)$ -gate MBQC pattern

The total state after entangling $(\land Z)$ becomes:

$$|\phi\rangle_{12} := \wedge Z_{12} (|\psi\rangle_1 \otimes |+\rangle_2) = a |0+\rangle_{12} + b |1-\rangle_{12}$$

• To see the effect of the measurement M_1^{θ} , we express **qubit 1** (that is to be measured) in the corresponding $|\pm_{\theta}\rangle$ basis (see expansion of $|0\rangle$, $|1\rangle$ in this basis):

$$|\phi\rangle_{12} = \frac{a}{\sqrt{2}}(|+_{\theta}\rangle_{1} + |-_{\theta}\rangle_{1})|+\rangle_{2} + \frac{b}{\sqrt{2}}e^{-i\theta}(|+_{\theta}\rangle_{1} - |-_{\theta}\rangle_{1})|-\rangle_{2}$$

$$= \frac{1}{\sqrt{2}}|+_{\theta}\rangle_{1}(a|+\rangle_{2} + be^{-i\theta}|-\rangle_{2}) + \frac{1}{\sqrt{2}}|-_{\theta}\rangle_{1}(a|+\rangle_{2} - be^{-i\theta}|-\rangle_{2})$$

$$(1)$$

ullet We can re-express now the state of **qubit 2** in each of the two terms in the RHS of Eq 1

• We note that the first term can be written as:

$$HR(-\theta)\left(a\ket{0}+b\ket{1}
ight)=H\left(a\ket{0}+be^{-i\theta}\ket{1}
ight)=a\ket{+}+be^{-i\theta}\ket{-}$$

• and that the second term can be written as:

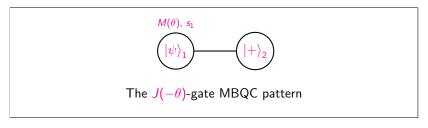
$$XHR(-\theta)(a|0\rangle + b|1\rangle) = Xa|+\rangle + Xbe^{-i\theta}|-\rangle = a|+\rangle - be^{-i\theta}|-\rangle$$

• We therefore have:

$$|\phi\rangle_{12} = |+_{\theta}\rangle_{1} (X_{2})^{0} J(-\theta)_{2} |\psi\rangle_{2} + |-_{\theta}\rangle_{1} (X_{2})^{1} J(-\theta)_{2} |\psi\rangle_{2}$$

- We can see that measuring **qubit 1** in the M_1^{θ} -basis we end-up with **qubit 2** being at the state $X^{s_1}J(-\theta)|\psi\rangle$, where s_1 is the outcome of qubit's 1 measurement.
- Interpretation: We have teleported the state $|\psi\rangle_1$ to qubit 2, and in the same time we have applied on it, the gate $J(-\theta)$ along with an extra operation X^{s_1} that depends on the previous measurement outcome
- To restore "determinism" we need to "cancel" the gate X^{s1}, something that is possible by adapting the measurement angles (see next lecture)

The $J(\theta)$ single-qubit gate: Summary



The above measurement pattern results to:

$$X^{s_1}J(-\theta)|\psi\rangle_2 = X^{s_1}HR(-\theta)|\psi\rangle_2$$

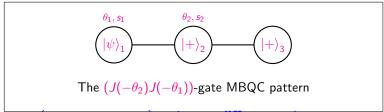
Examples:

- $\theta = 0$: Output $X^{s_1}H|\psi\rangle_2$
- $\theta = \pi$: Output $X^{s_1}HZ |\psi\rangle_2$
- $\theta = \pi/2$: Output $X^{s_1}HR(-\pi/2)|\psi\rangle_2 = X^{s_1}H\begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}|\psi\rangle_2$

Part III

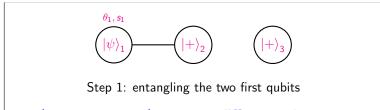
MBQC as Universal Model of Quantum Computation

How to apply consecutively two $J(\theta)$ -gates:



Operators (or measurements) acting on **different** subsystems commute (can be performed in arbitrary order)

How to apply consecutively two $J(\theta)$ -gates:

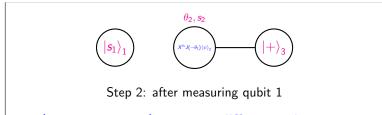


Operators (or measurements) acting on **different** subsystems commute (can be performed in arbitrary order)

We can break the pattern of the figure to two steps:

Consider qubit 1 and qubit 2 alone: Prepare these qubits, entangle them and measure qubit 1 (see previous example)

How to apply consecutively two $J(\theta)$ -gates:



Operators (or measurements) acting on **different** subsystems commute (can be performed in arbitrary order)

We can break the pattern of the figure to two steps:

- Consider qubit 1 and qubit 2 alone: Prepare these qubits, entangle them and measure qubit 1 (see previous example)
- Then prepare qubit 3 entangle qubit 2 with qubit 3 and measure qubit 2.
 - Step 2 is again the $J(-\theta)$ -gate but has as input **qubit 2** in the state produced in step 1.

In more details the two steps:

1 The input was $|\psi\rangle_1$, measurement angle θ_1 and outcome s_1 :

$$|s_1\rangle \otimes X_2^{s_1}H_2R_2(-\theta_1)|\psi\rangle_2 = |s_1\rangle \otimes X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$$

② The input was $X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$ (we can ignore qubit 1 now that is measured), measurement angle θ_2 and outcome s_2 :

$$|s_2\rangle\otimes X_3^{s_2}J_3(-\theta_2)(X_3^{s_1}J_3(-\theta_1)|\psi\rangle_3)$$

In more details the two steps:

1 The input was $|\psi\rangle_1$, measurement angle θ_1 and outcome s_1 :

$$|s_1\rangle \otimes X_2^{s_1}H_2R_2(-\theta_1)|\psi\rangle_2 = |s_1\rangle \otimes X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$$

② The input was $X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$ (we can ignore qubit 1 now that is measured), measurement angle θ_2 and outcome s_2 :

$$|s_2\rangle\otimes X_3^{s_2}J_3(-\theta_2)(X_3^{s_1}J_3(-\theta_1)|\psi\rangle_3)$$

The "corrections" X^{s_1}, X^{s_2} will be dealt at next lecture in the general case.

Now note that the output (**qubit 3**) is now at the state $|\psi\rangle$ with the gates $J(-\theta_2)J(-\theta_1)$ applied.

In more details the two steps:

1 The input was $|\psi\rangle_1$, measurement angle θ_1 and outcome s_1 :

$$|s_1\rangle \otimes X_2^{s_1}H_2R_2(-\theta_1)|\psi\rangle_2 = |s_1\rangle \otimes X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$$

② The input was $X_2^{s_1}J_2(-\theta_1)|\psi\rangle_2$ (we can ignore qubit 1 now that is measured), measurement angle θ_2 and outcome s_2 :

$$|s_2\rangle\otimes X_3^{s_2}J_3(-\theta_2)(X_3^{s_1}J_3(-\theta_1)|\psi\rangle_3)$$

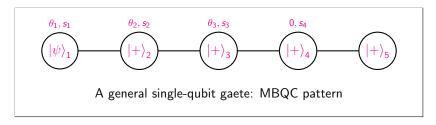
The "corrections" X^{s_1}, X^{s_2} will be dealt at next lecture in the general case.

Now note that the output (**qubit 3**) is now at the state $|\psi\rangle$ with the gates $J(-\theta_2)J(-\theta_1)$ applied.

• (Standard) Teleportation: Case $\theta_1 = \theta_2 = 0$: $X_3^{s_2} H_3 X_3^{s_1} H_3 |\psi\rangle_3 = X_3^{s_2} Z_3^{s_1} H_3 H_3 |\psi\rangle = X_3^{s_2} Z_3^{s_1} |\psi\rangle$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

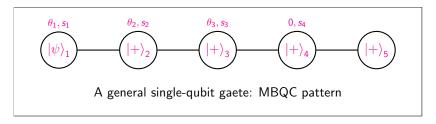
$$U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$$



$$|s_1\rangle \otimes X^{s_1}J(-\theta_1)|\psi\rangle$$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

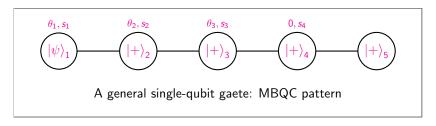
$$U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$$



$$|s_1\rangle\otimes|s_2\rangle\otimes X^{s_2}J(-\theta_2)X^{s_1}J(-\theta_1)|\psi\rangle$$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

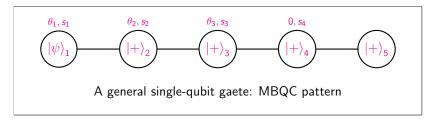
$$U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$$



$$|s_1\rangle\otimes|s_2\rangle\otimes|s_3\rangle\otimes X^{s_3}J(-\theta_3)X^{s_2}J(-\theta_2)X^{s_1}J(-\theta_1)|\psi\rangle$$

Any single-qubit gate can be implemented repeating the $J(\theta)$ pattern since any single-qubit unitary can be written using three angles $\theta_1, \theta_2, \theta_3$

$$U = J(0)J(-\theta_3)J(-\theta_2)J(-\theta_1)$$



$$|s_1\rangle\otimes|s_2\rangle\otimes|s_3\rangle\otimes|s_4\rangle\otimes X^{s_4}J(0)X^{s_3}J(-\theta_3)X^{s_2}J(-\theta_2)X^{s_1}J(-\theta_1)|\psi\rangle$$

Two Qubit Gates

- What is missing to achieve the universal $J(\theta)$ gate-set is a way to implement the $\wedge Z$ -gate.
- ullet We already have the $\wedge Z$ -gate in our generating graph process
- Care is needed, as it should be applied to qubits not already measured (2-dim measurement pattern)

Two Qubit Gates

- What is missing to achieve the universal $J(\theta)$ gate-set is a way to implement the $\wedge Z$ -gate.
- ullet We already have the ΛZ -gate in our generating graph process
- Care is needed, as it should be applied to qubits not already measured (2-dim measurement pattern)
- Information "flows" as qubits are teleported through the measurement pattern
- Entangling should happen without obstructing the "flow" (teleportation path)

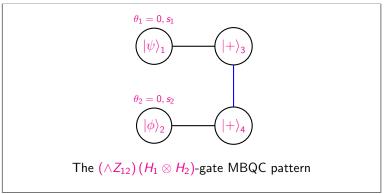
Two Qubit Gates

- What is missing to achieve the universal $J(\theta)$ gate-set is a way to implement the $\wedge Z$ -gate.
- ullet We already have the ΛZ -gate in our generating graph process
- Care is needed, as it should be applied to qubits not already measured (2-dim measurement pattern)
- Information "flows" as qubits are teleported through the measurement pattern
- Entangling should happen without obstructing the "flow" (teleportation path)
- Horizontal $\wedge Z$ is used to teleport information (and gates)
- Vertical $\wedge Z$ is used as the 2-qubit gate.

Example: Two Qubit Gate

We will ignore the corrections (assume all s_i 's are zero).

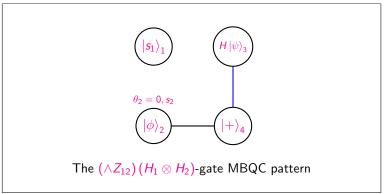
We will see step by step the patern:



Example: Two Qubit Gate

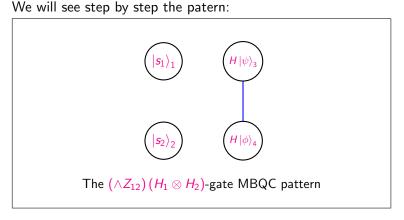
We will ignore the corrections (assume all s_i 's are zero).

We will see step by step the patern:



Example: Two Qubit Gate

We will ignore the corrections (assume all s_i 's are zero).



Example: details

• Consider qubit 1 and qubit 3 (the effect of measuring qubit 1).

$$|s_1\rangle_1\otimes X_3^{s_1}H_3|\psi\rangle_3$$

Oconsider qubit 2 and qubit 4 (the effect of measuring qubit 1).

$$|s_2\rangle_2\otimes X_4^{s_2}H_4|\phi\rangle_4$$

3 We apply a $\wedge \mathbb{Z}$ on the qubits 3 and 4.

$$|s_1\rangle_1 \otimes |s_2\rangle \otimes \wedge Z_{34} \left(X_3^{s_1} H_3 |\psi\rangle_3 \otimes X_4^{s_2} H_4 |\phi\rangle_4\right)$$

Example: details

• Consider qubit 1 and qubit 3 (the effect of measuring qubit 1).

$$|s_1\rangle_1 \otimes X_3^{s_1} H_3 |\psi\rangle_3$$

Oconsider qubit 2 and qubit 4 (the effect of measuring qubit 1).

$$|s_2\rangle_2\otimes X_4^{s_2}H_4|\phi\rangle_4$$

3 We apply a $\wedge \mathbb{Z}$ on the qubits 3 and 4.

$$\left|s_{1}\right\rangle_{1}\otimes\left|s_{2}\right\rangle\otimes\wedge Z_{34}\left(X_{3}^{s_{1}}H_{3}\left|\psi\right\rangle_{3}\otimes X_{4}^{s_{2}}H_{4}\left|\phi\right\rangle_{4}\right)$$

- The corrections (X's that depend on measurement outcomes) will be formally treated later (L16)
- The net effect (baring corrections setting $s_i = 0$) is:

$$(\wedge Z)(H\otimes H)(|\psi\rangle\otimes|\phi\rangle)$$

• We have measurement pattern for the $J(-\theta)$ gate:

Input qubit entangled with another one and measured in the M^{θ} basis

- We have measurement pattern for the $J(-\theta)$ gate: Input qubit entangled with another one and measured in the M^{θ} basis
- General single qubit gates can be obtained by combining the previous gates and noting that all single qubit unitaries can be decomposed as $J(0)J(\theta_1)J(\theta_2)J(\theta_3)$

- ullet We have measurement pattern for the J(- heta) gate:
 - Input qubit entangled with another one and measured in the M^{θ} basis
- General single qubit gates can be obtained by combining the previous gates and noting that all single qubit unitaries can be decomposed as $J(0)J(\theta_1)J(\theta_2)J(\theta_3)$
- For two-qubit gate, we use $\wedge Z$ that is already in the graph state, but:
 - Need to apply it "vertically" to avoid obstructing the "flow" of the computation

- ullet We have measurement pattern for the J(- heta) gate:
 - Input qubit entangled with another one and measured in the M^{θ} basis
- General single qubit gates can be obtained by combining the previous gates and noting that all single qubit unitaries can be decomposed as $J(0)J(\theta_1)J(\theta_2)J(\theta_3)$
- For two-qubit gate, we use $\wedge Z$ that is already in the graph state, but:
 - Need to apply it "vertically" to avoid obstructing the "flow" of the computation
- **Next Lecture:** formally how to treat "corrections" and resort deterministic application of gates!

Further Reading

- One-way Quantum Computation a tutorial introduction, D. Browne and H. Briegel, arxiv:quant-ph/0603226
- An introduction to measurement based quantum computation, R. Jozsa, arxiv:quant-ph/0508124
- Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments, S. Barz, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol 48, Num. 8 (2015).
- Chapter 7, Semantic Techniques in Quantum Computation Editors Simon Gay and Ian Mackie

