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This Lecture

1 Intro to Machine Learning

2 What can Quantum bring to ML

3 Quantum Neural Networks

4 Classical and Quantum Kernels

Petros Wallden Lecture 26: Quantum Machine Learning



Part I

Introduction to (Classical) Machine Learning
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Quick Intro to Classical Machine Learning

Disclaimer: basic intro targeted to non-CS students

Material for understanding Quantum ML part

There are mainly three models of ML (and combinations)
1 Supervised

2 Unsupervised

3 Reinforcement Learning

Rest Intro: what (supervised, unsupervised), how (supervised)
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Supervised ML: what
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Supervised ML: what

Encode to (feature) vectors x⃗ ∈ S ⊆ Rn

Labels y ∈ Labels

Label function f : S → Labels

Data set (training set): D = {(x⃗i , yi ) | yi = f (x⃗i )}

Aim: correctly label unlabelled data

Given D output a good guess for f

Function f can be used for classification (discrete label) or
regression (continuous label)
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Supervised ML: what

More generally (probabilistic – c.f. generative)

Encode to (feature) vectors x⃗ ∈ S ⊆ Rn

Labels y ∈ Labels

Label function P(x⃗ , y)

Data set (training set): D ∼ P×|D|

Aim: learning about data-label relationships from samples

Given D output a good guess for P(y |x⃗)

Can use sampling from P(y |x⃗) to label unseen data
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Unsupervised ML: what
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Unsupervised ML: what

Encode to (feature) vectors x⃗ ∈ S ⊆ Rn

World: P(x⃗)

Data set (training set): D ∼ P×|D|

Aim: learning about (all) features in a distribution from samples

Discriminative (clustering) “label without examples”

Generative (make more cats):

approximate sampling from P given D

Promising quantumly (but not covered here)
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Supervised ML: how (general)

Need to guess f : S ⊆ Rn → Labels from D = {x⃗i , yi = f (x⃗i )}

Hypothesis family (model): {f θ|f θ : S ⊆ Rn → Labels}

Learning = Training ≈ fitting

“Loss”/“accuracy” e.g. L(θ) =
∑

(x⃗ ,y)∈D |f θ(x⃗)− y |2

Regularisation R(θ): to prevent overfitting (favour fewer
non-zero/significant parameters)

Find the function from the family that is best for prediction
given the data D:

f θ | argmin
θ

(L(θ) + R(θ))
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Supervised ML: how (general)
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Supervised ML: how (Perceptron)

Perceptron: Inputs x⃗ , output given by f (x⃗) = h(w⃗ · x⃗ + b)

w⃗ · x⃗ dot product, where w⃗ weights /trainable parameters

b bias

h(·) activation function (e.g. heaviside step-function)

linearly combines inputs with some weight, adds bias, and
then activates neuron or not (depending on threshold)
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Supervised ML: how (Neural Networks)

Combine perceptrons → Neural Network

Input layer: encoding data to input vector

Training: find w⃗i , bi ∀i ∈ NN, that min regularised loss

Optimisation (chain-rule based stochastic gradient decent)

Classification: input unseen x⃗ to trained NN to output label
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Supervised ML: how (Support Vector Machines)

Assume data linearly separable

D = {(xi , yi )} | xi ∈ Rn, yi ∈ {−1, 1}
Optimal hyperplane given by

argmax
w⃗ ,b

min
i∈{1,··· ,N}

yi (w⃗
T · xi + b)

∥w⃗∥
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Supervised ML: how (SVM)

Points closer and equidistant to hyperplane: determine
classification (support vectors)

Dual Problem:
Representation in terms of datapoints
Sparser evaluation (many α’s vanish)
Only inner products matter: αiαjyiyj(xi )

T xj

When non-linearly separable?

(see later Feature Maps and Kernel trick)
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Part II

What can Quantum bring to Machine Learning?
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What could quantum offer to ML? (general)

Quantum algorithms that speed-up (classical) ML
Grover’s/amplitude amplification (perceptron
training/computation of attention)

VQAs (optimisation subroutines/training)

HHL algorithm: Exponential advantage in linear algebra task

Given A |x⟩ = |b⟩ can efficiently (log-time) find state |x⟩ that
encodes in the amplitudes the solution

But: need to encode vector |b⟩; A needs to be sparse and well
conditioned; readout summary ⟨x |M |x⟩ should suffice

New Models/Quantum Neural Networks (QNN)
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What could QNN offer?

1. Expressivity

Quantum circuits can efficiently sample from probability
distributions that cannot be sampled classically efficiently

For example “quantum advantage” sampling problems

2. Accuracy

There are problems that quantum models (QNN) can fit easier,
with fewer parameters

Specifically, systems that physically or mathematically
resemble quantum systems (quantum-like)
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What could QNN offer?

3. Generalisation

Quantum models could predict better unseen data

For systems quantum-like systems simpler models fit the data
giving better generalisation

4. Speed

Training and/or inferences could be performed faster (generically,
but also Quantum Kernel Methods – see later)

5. Energy efficiency

Training may not be as energy demanding for comparable
performances
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Obstacles

Not known proofs of the above advantages in practice

Trainability Vs Expressivity

Barren Plateaux/Vanishing Gradients

Classical Simulation (of circuit or model)

Noise (for NISQ era)
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Part III

Quantum Neural Networks
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Quantum Neural Networks

1 Encoding the (classical) data on a quantum state

|Φ(x⃗)⟩ := V (x⃗) |0⟩n

2 Variational Circuit U(θ⃗) with trainable parameters θ⃗

3 Output f (⟨z⃗⟩): repeat multiple times; each time obtain
bit-sting z⃗ ; average ⟨z⃗⟩; compute f activation-function
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QNN: Encoding

Input is n-bit string: x⃗ = xn−1xn−2 · · · x0
Basis Encoding: We have n qubits:
|ΦB(x⃗)⟩ := |xn−1xn−2 · · · x0⟩

Amplitude Encoding: We have m = log n qubits denoting
the position in the bit string, where the value of the bit is
encoded in the amplitude:

|ΦA(x⃗)⟩ := 1
|x⃗ |

∑m−1
i=0 xi |i⟩

Any other function/unitary |Φ(x⃗)⟩ = V (x⃗) |0⟩
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QNN: Encoding

ZZ Feature Map:
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QNN: Training & Output

Optimisation to find parameters θ⃗ that minimise the loss:

⟨Φ(x⃗)|U†(θ⃗)f (z)U(θ⃗) |Φ(x⃗)⟩

Once parameters are fixed, can use the quantum circuit for
inference

Other models are possible (e.g. “data re-uploading”)
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Part IV

Classical and Quantum Kernels
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SVM and Classical/Quantum Kernels

When non-linearly separable can use a “Feature Map” to a
higher dimensional space that they become linearly separable

Hard to work on higher dimensional feature space

Kernel Trick: Can train and evaluate SVM without mapping
data points there. Only inner products matter!
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Classical and Quantum Kernels

Dual formulation of SVM becomes

argmax
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj⟨ϕ(xi ), ϕ(xj)⟩

where K (xi , xj) := ⟨ϕ(xi ), ϕ(xj)⟩ is the Kernel

Only dependence on data (x ’s) comes from the Kernel, which
is defined as the inner product between “encoded” inputs

Quantumly is easy to perform inner products!

Feature Maps = Data Encodings
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Classical and Quantum Kernels

Inner product is easy quantumly: | ⟨Φ(y⃗)|Φ(x⃗)⟩|2

If the inner product is unity, then always get zero’s

Can also measure overlap using the Hadamard-test idea

|Φ(x⃗)⟩ = V (x⃗) |0⟩) data encoding → model param. cancel!

K (y⃗ , x⃗) = | ⟨0|V †(y⃗)U†(θ)U(θ)V (x⃗) |0⟩ |2 =

K (y⃗ , x⃗) = | ⟨Φ(y⃗)|Φ(x⃗)⟩|2

Can do classical SVM using a Kernel computed with quantum
feature maps!
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