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@ Intro to Machine Learning
@ What can Quantum bring to ML
© Quantum Neural Networks

@ C(lassical and Quantum Kernels
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Introduction to (Classical) Machine Learning
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Quick Intro to Classical Machine Learning

@ Disclaimer: basic intro targeted to non-CS students

@ Material for understanding Quantum ML part
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Quick Intro to Classical Machine Learning

@ Disclaimer: basic intro targeted to non-CS students

@ Material for understanding Quantum ML part

@ There are mainly three models of ML (and combinations)
@ Supervised

@ Unsupervised

© Reinforcement Learning
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Quick Intro to Classical Machine Learning

Disclaimer: basic intro targeted to non-CS students

@ Material for understanding Quantum ML part

@ There are mainly three models of ML (and combinations)
@ Supervised
@ Unsupervised
© Reinforcement Learning
@ Rest Intro: what (supervised, unsupervised), how (supervised)
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Supervised ML: what

Supervised learning
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Supervised ML: what

Encode to (feature) vectors X € S C R”

Labels y € Labels

Label function f : S — Labels

Data set (training set): D = {(Xi,yi) | yi = f(X;)}
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Supervised ML: what

Encode to (feature) vectors X € S C R”

Labels y € Labels

Label function f : S — Labels

Data set (training set): D = {(Xi,yi) | yi = f(X;)}

Aim: correctly label unlabelled data

Given D output a good guess for f J

@ Function f can be used for classification (discrete label) or
regression (continuous label)
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Supervised ML: what

More generally (probabilistic — c.f. generative)

Encode to (feature) vectors X € S C R”

Labels y € Labels

Label function P(x, y)

Data set (training set): D ~ P*IDl
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Supervised ML: what

More generally (probabilistic — c.f. generative)

Encode to (feature) vectors X € S C R”

Labels y € Labels

Label function P(x, y)

Data set (training set): D ~ P*IDl

Aim: learning about data-label relationships from samples

Given D output a good guess for P(y|x) |

e Can use sampling from P(y|X) to label unseen data
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Unsupervised ML: what

Unsupervised learning
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Unsupervised ML: what

@ Encode to (feature) vectors X € S C R"
e World: P(X)

e Data set (training set): D ~ P*IDI
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Unsupervised ML: what

@ Encode to (feature) vectors X € S C R"
e World: P(X)

e Data set (training set): D ~ P*IDI

Aim: learning about (all) features in a distribution from samples
e Discriminative (clustering) “label without examples”
@ Generative (make more cats):
approximate sampling from P given D

e Promising quantumly (but not covered here)
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Supervised ML: how (general)

© Need to guess f : S C R" — Labels from D = {X;, yi = f(X;)}
o Hypothesis family (model): {f?|f? : S C R” — Labels}
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Supervised ML: how (general)

© Need to guess f : S C R" — Labels from D = {X;, yi = f(X;)}
o Hypothesis family (model): {f?|f? : S C R” — Labels}

Learning = Training = fitting J

® “Loss” /“accuracy” e.g. L(0) = > (z,)ep 1F9(X) — y|?

o Regularisation R(f): to prevent overfitting (favour fewer
non-zero/significant parameters)
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Supervised ML: how (general)

© Need to guess f : S C R" — Labels from D = {X;, yi = f(X;)}

o Hypothesis family (model): {f?|f? : S C R" — Labels}

Learning = Training = fitting J

® “Loss” /“accuracy” e.g. L(0) = > (z,)ep 1F9(X) — y|?

o Regularisation R(f): to prevent overfitting (favour fewer
non-zero/significant parameters)

@ Find the function from the family that is best for prediction
given the data D:

o | argamin (L(#) + R(9))
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Supervised ML: how (general)

undertrain overtrain just right
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Supervised ML: how (Perceptron)

1—>(b) Bias

Xo —>{ Wo) \
“ w{% . activation

— A Z *_function

X, —»(W;
H / b+ XoWotK1 W1+ HXnWn
Xo —>{ Wy

@ Perceptron: Inputs X, output given by f(X) = h(w - X + b)
e w - X dot product, where w weights /trainable parameters
e b bias
o h(-) activation function (e.g. heaviside step-function)

output

@ linearly combines inputs with some weight, adds bias, and
then activates neuron or not (depending on threshold)
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Supervised ML: how (Neural Networks)

@ Combine perceptrons — Neural Network

Input layer Hidden layers Output layer
Y (T

@ Input layer: encoding data to input vector
@ Training: find w;, b; Vi € NN, that min regularised loss
Optimisation (chain-rule based stochastic gradient decent)

o Classification: input unseen X to trained NN to output label
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Supervised ML: how (Support Vector Machines)

T2

s
/

@ Assume data linearly separable
o D={(xi,yi)} | xi e R"y; € {-1,1}
@ Optimal hyperplane given by
y,'(V\_;T - Xi + b)

argmax min
w,b fE{l,'“,N} HWH
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Supervised ML: how (SVM)

@ Points closer and equidistant to hyperplane: determine
classification (support vectors)

Lagrangian approach

Dual problem:

Primal problem:

N LA
arg max Z(\; -5 ZZ(\ a;yiyi(xi)Tx;
arg min %HWHQ “ =1 =1
wib such that «; >0, for i=0,....N,

N
and Zu;y; =0.
i=1

such that y;(wTx; +b) > 1. i=1,..., N.

@ Dual Problem:
e Representation in terms of datapoints
e Sparser evaluation (many «a's vanish)
o Only inner products matter: a;a;yiy;(x)"x;
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Supervised ML: how (SVM)

@ Points closer and equidistant to hyperplane: determine
classification (support vectors)

Lagrangian approach
Dual problem:

Primal problem: .

NN
argmax Z(\,—%ZZ(\ a;yiyi(xi)Tx;

i=1
such that o; >0, fori=0,....N,

N
and Zu;y; =0.
i=1

1
arg min = ||w||?
wb 2

such that y;(wTx; +b) > 1. i=1,..., N.

N
w= an?y;x,x
i=1

@ Dual Problem:
e Representation in terms of datapoints

e Sparser evaluation (many a's vanish)
o Only inner products matter: a;a;yiy;(x)"x;
@ When non-linearly separable?

(see later Feature Maps and Kernel trick)
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Part Il

What can Quantum bring to Machine Learning?
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What could quantum offer to ML? (general)

Type of Algorithm

classical quantum

‘lcccQ
QC QQ

@ Quantum algorithms that speed-up (classical) ML
o Grover's/amplitude amplification (perceptron
training/computation of attention)

o VQAs (optimisation subroutines/training)

quantum
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What could quantum offer to ML? (general)

Type of Algorithm

classical quantum

‘lcccQ
QC QQ

@ Quantum algorithms that speed-up (classical) ML
o Grover's/amplitude amplification (perceptron
training/computation of attention)

quantum

o VQAs (optimisation subroutines/training)

e HHL algorithm: Exponential advantage in linear algebra task
Given A|x) = |b) can efficiently (log-time) find state |x) that
encodes in the amplitudes the solution

But: need to encode vector |b); A needs to be sparse and well
conditioned; readout summary (x| M |x) should suffice
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What could quantum offer to ML? (general)

Type of Algorithm

classical quantum

CQ
QQ

@ Quantum algorithms that speed-up (classical) ML
o Grover's/amplitude amplification (perceptron
training/computation of attention)

classical
N
M

Type of Data

quantun

o VQAs (optimisation subroutines/training)
e HHL algorithm: Exponential advantage in linear algebra task

Given A|x) = |b) can efficiently (log-time) find state |x) that
encodes in the amplitudes the solution

But: need to encode vector |b); A needs to be sparse and well
conditioned; readout summary (x| M |x) should suffice

e New Models/Quantum Neural Networks (QNN)



What could QNN offer?

Quantum circuits can efficiently sample from probability
distributions that cannot be sampled classically efficiently

@ For example “quantum advantage” sampling problems
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What could QNN offer?

Quantum circuits can efficiently sample from probability
distributions that cannot be sampled classically efficiently

@ For example “quantum advantage” sampling problems

There are problems that quantum models (QNN) can fit easier,
with fewer parameters

@ Specifically, systems that physically or mathematically
resemble quantum systems (quantum-like)
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What could QNN offer?

3. Generalisation
Quantum models could predict better unseen data

@ For systems quantum-like systems simpler models fit the data
giving better generalisation
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What could QNN offer?

3. Generalisation
Quantum models could predict better unseen data

@ For systems quantum-like systems simpler models fit the data
giving better generalisation

Training and/or inferences could be performed faster (generically,
but also Quantum Kernel Methods — see later)

Petros Wallden Lecture 26: Quantum Machine Learning



What could QNN offer?

3. Generalisation
Quantum models could predict better unseen data

@ For systems quantum-like systems simpler models fit the data
giving better generalisation

Training and/or inferences could be performed faster (generically,
but also Quantum Kernel Methods — see later)

5. Energy efficiency

Training may not be as energy demanding for comparable
performances
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Obstacles

Not known proofs of the above advantages in practice

Trainability Vs Expressivity

(]

Barren Plateaux/Vanishing Gradients

Classical Simulation (of circuit or model)

Noise (for NISQ era)
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Part Il

Quantum Neural Networks
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Quantum Neural Networks

0) I A
|
0) | A
va | o
0) | @
|
0) | A

© Encoding the (classical) data on a quantum state
[®(X)) := V(x)10)"
@ Variational Circuit U(f) with trainable parameters

@ Output f((Z2)): repeat multiple times; each time obtain
bit-sting Z; average (Z); compute f activation-function
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QNN: Encoding

@ Input is n-bit string: X = xp—1Xp—2 -+ X0

e Basis Encoding: We have n qubits:
[®5(X)) = [Xn-1Xn—2 - x0)

o Amplitude Encoding: We have m = log n qubits denoting
the position in the bit string, where the value of the bit is
encoded in the amplitude:

OAR)) = & X i)
@ Any other function/unitary |®(X)) = V(X) |0)
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QNN: Encoding

o ZZ Feature Map:

Upy =exp |1 Y os(@) [] 2

SC[n] icS

¢} (F) = x; and ¢y1,2)(F) = (m — 1) (m — x2)

({j(f'){i‘,,, } (.F)Z’Zm

—€ Z @ 9_

Z/{(I) - H@-T?-(](I)H®T? [](I) e H@H[j’@
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QNN: Training & Output

@ Optimisation to find parameters g that minimise the loss:
(®()| UT(0)F(2)U(B) | (%))

@ Once parameters are fixed, can use the quantum circuit for
inference

@ Other models are possible (e.g. “data re-uploading”)

Circuit Layer 1 Circuit Layer L (0]
— - HHe=
— - i gy

wt St () WL SL (z) WL+l
— - HA
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Classical and Quantum Kernels
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SVM and Classical/Quantum Kernels

@ When non-linearly separable can use a “Feature Map” to a
higher dimensional space that they become linearly separable

X3 (&) w+b=0

— q) —>
o:RIHRP X — O(X)
@ Hard to work on higher dimensional feature space

e Kernel Trick: Can train and evaluate SVM without mapping
data points there. Only inner products matter!
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Classical and Quantum Kernels

@ Dual formulation of SVM becomes

arg maxZa, - = Zza CVJY:)/J (xi), d(x )>

/1]1

where K(x;, xj) := (¢(x;), ¢(x;)) is the Kernel
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Classical and Quantum Kernels

@ Dual formulation of SVM becomes
argmaxZa,—fZZOé CVJY:)/J (xi), d(x )>
i=1 j=1
where K(x;, xj) := (¢(x;), ¢(x;)) is the Kernel

@ Only dependence on data (x's) comes from the Kernel, which
is defined as the inner product between “encoded” inputs
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Classical and Quantum Kernels

@ Dual formulation of SVM becomes

arg maxZa, - = Zza CVJY:)/J (xi), d(x )>

/1]1

where K(x;, xj) := (¢(x;), ¢(x;)) is the Kernel

@ Only dependence on data (x's) comes from the Kernel, which
is defined as the inner product between “encoded” inputs

@ Quantumly is easy to perform inner products!

@ Feature Maps = Data Encodings
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Classical and Quantum Kernels

o Inner product is easy quantumly: | (®(y)| ®(X))[?

0

— — (0]
0
0
)

— — (0
s =

& =& (O
S

f)

e

y —]
) —
) —
y —
) — — — (0]

0

@ If the inner product is unity, then always get zero's

@ Can also measure overlap using the Hadamard-test idea
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Classical and Quantum Kernels

o Inner product is easy quantumly: | (®(y)| ®(X))[?

0

— — (0]
0
|0
0

— — (0
s = ol

& =& (O
S

e

y —]
) —
) —
y —
) — — — (0]

0

@ If the inner product is unity, then always get zero's
@ Can also measure overlap using the Hadamard-test idea
o |¥(x)) = V(X)|0)) data encoding — model param. cancel!

K(7.2) = | (0| V7 UHO)U(0) V(%) 0) > =

K(y.X) = [(®(7)| ®(x))[?
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Classical and Quantum Kernels

o Inner product is easy quantumly: | (®(y)| ®(X))[?

|0) — — — (0]

0 — ~ M ~ (O
= >

0) — & +=%&
3@« & (0]

|0) — - — (0|

[0) — — — (0]

@ If the inner product is unity, then always get zero's
@ Can also measure overlap using the Hadamard-test idea
o |¥(x)) = V(X)|0)) data encoding — model param. cancel!

K(7.2) = | (0| V7 UHO)U(0) V(%) 0) > =

K(7,%) = [{®(7)| o(x))[*
@ Can do classical SVM using a Kernel computed with quantum
feature maps!
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