Introduction to Quantum Computing
Pennylane: Oracles and promises
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Exercise 1: Uniform superpositions
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n bits = 4

dev = pl.device("default.qubit", wires=n bits

@pl.gnode(dev)
def uniformsuperposition()

"""Build a circuit that creates an n-qubit uniform superposition

return pl

pl.drawer.use style('black white")

pl.draw mpl(uniformsuperposition ();




A uniform superposition will include the solution string Is). But by itself, this doesn't help us break the lock, since
the superposition includes everything else as well! Once we open the quantum computer and look inside, we may
observe the correct lock combination, but we might also see an incorrect combination, due to the probabilistic
nature of quantum computation. Let's draw a cartoon of the case for the single-bit lock:

We still only have a 50% chance of landing on the correct answer when the computation finishes. More generally,
if we start in the even superposition Eq. (1) for n bits, our chance of observing the correct answer is 1/2" These
are the same odds as a random classical guess! So, we see the basic dilemma (or rather, di"lemma). A quantum

superposition may look like it can result in an exponential number of things being done at once, but once we take
a measurement, we will only get a random snapshot of what it's done.

Quantum algorithms are all about shuffling around this exponential collection of terms in the superposition so that,
when we observe the system, our random snapshot has a high probability of showing us the thing we are looking
for. And given that our algorithms involve randomness, we also should be comparing them to random classical
algorithms, like guessing the combination.



Let's think a bit more about how this lock breaking actually works. Call the correct combination for
an n-bit lock S € {0, 1}n. We can model the lock as a function J from n-bit strings X € {0’ 1}n
toabit¥y € {0, 1}, with f(x) =0 meaning "the combination doesn't work" and f(x) =1
meaning "the combination works". More concisely,

1 x=s
f(x) = {0 otherwise.

We encode this as a unitary operator, Uf, which acts on basis states as

Uslx) = (—1)7®|x)
_ {—lx) X=s

x)  otherwise.
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def oracle matrix(key) :

"""Create the unitary matrix corresponding to the binary key (list[int])

e.g. key=[0,1,1] should give the diagonal matrix
# Hint: use np.ravel multi index
matrix = np.identity(2**len (key))

return matrix

print (oracle matrix([0,1,1,0]))

[111111_111111111]"""
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@pl.gnode (dev)
def oracle circuit (key):
# Hint: use pl.QubitUnitary

return pl.probs (wires=range (n_bits))

pl.draw mpl (oracle circuit) ([0,1,1,0]);

print (oracle circuit ([0,1,1,0]))




Applying the oracle by itself is not enough to improve our lock picker. The problem is that we
introduce a phase change which is unobservable without further processing. In order to make
some progress, we must combine states to induce a relative change of phase which is detectable.
To illustrate, let's take a superposition of two states |x) and IY>, and apply the oracle:
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This leads to a rudimentary algorithm: test solutions in pairs. This is almost the brute force
algorithm, except that instead of searching through 2" combinations, we search through =l
pairs, so we improve by a constant factor. Once we have identified the correct pair, we can just
test both classically. This last step doesn't scale with n, so we have a very modest quantum

speedup!



)
- —{F
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n bits = 4
dev = pl.device("default.qubit", wires=n bits)
@pl.gnode (dev)
def pair circuit (probe, key):
"""Test whether probe (list[int]) contains a solution to key (list[int])"""

return pl.probs (wires=n bits-1)

pl.draw mpl (pair circuit) ([1,0,0,1],([0,1,1,1]);
print (pair circuit([0,1,1,1],[0,1,1,1]))




Exercise 3: Pair programming

secretkey = [0,1,0,1]

def pair lock picker(trials):

keystrings = [np.binary repr(n, n bits-1) for n in range(2**(n bits-1))]
keys = [[int(s) for s in keystring] for keystring in keystrings]
testnumbers = []

for trial in range(trials):
counter = 0
for key in keys:
counter += 1
if np.isclose(pair circuit (key, secretkey)[1], 1):
break
testnumbers.append (counter)

return sum(testnumbers)/trials

trials = 500

output = pair lock picker(trials)

print (f"For {n bits} bits, it takes", output, "pair tests on average.")




Let's return to the scenario where our lock has multiple secret combinations, with a set of solution

strings S and non-solution strings T'. Each solution s € S contributes —1 in the sum, and each
non-solution t € T contributes +1, so that

Ao=o(TI-1S). ()

Deutsch and Jozsa noticed something very clever. Call the situation where S| = |T "balanced",

i.e., there are just as many solutions as non-solutions. Then the amplitude (1) vanishes, and you
will never observe 0! But if f is "constant", with S = @ or T = J, then Ao = £1 and you will

always observe 0! This leads to the Deutsch-Jozsa algorithm. If we are given the promise that f

is either balanced or constant, then applying the same set of gates and observing will tell us which
it is. It just depends on whether we see 0 or not!
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Exercise 4: Deutsch-Jozsa
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def oracle matrix(keys):
"""Create the unitary matrix corresponding to the binary key (list[int]
e.g. key=[0,1,1] should give the diagonal matrix [1,1,1,-1,1,1,1,1]"""
# Hint: use np.ravel multi_ index
matrix = np.identity (2 ** n bits)

return matrix

@pl.gnode (dev)
def deutschjozsa (keys) :
"""Build the Deutsch-Jozsa circuit"""

return pl.probs (wires=range (n bits))

keys = ([[0,0,0,0],(0,0,0,1],(1,0,0,0],(0O,1,0,0],(1,12,0,0],(0O,0,1,0],(0,0,1,1],(0,1,1,0]]
if np.isclose (deutschjozsa(keys) [0],0):

print ("balanced")
elees

print ("constant")

)




n—1
f@) =) az; (mod 2).
=0
In general, Uy sends the state |Z)|y) to the state |Z)|y + d - & (mod 2)).

Suppose, for example, that @ = [0, 1, 0]. Then U|111)|0) = |111)|1), since we are evaluating f at the point
= [1, 1, 1]. The scalar product between the two values is 1, so the last qubit of the output will take the value

1.

The Bernstein—Vazirani algorithm makes use of this oracle according to the following circuit:
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What we can see is that, by simply using Hadamard gates before and after the oracle, after a single run, the

output of the circuit is exactly the hidden value of a.
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Exercise 5: Bernstein-Vazirani
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dev = pl.device("default.qubit", wires = 4, shots = 1)

def oracle() :
"""Encode the hidden value in a circuit"""
pl.CNOT (wires=[1, 3])
pl.CNOT (wires=[2 ,3])

@pl.gnode (dev)
def bernsteinvazirani() :
"""Sample the Bernstein-Vazirani circuit to return the hidden value

return pl.sample(wires = range(3))

pl.draw mpl(bernsteinvazirani) ()
a = bernsteinvazirani()

print (£"The value of a is {a}")




