

Basis: Computational basis

$$\mathcal{H} \equiv \mathbb{C}^d$$

Computational basis

$$\mathcal{H}_{\mathcal{Q}} = \operatorname{Span}\{|0\rangle, |1\rangle\}$$

- $\forall |\psi\rangle, \exists \psi_0 \text{ and } \psi_1 : |\psi\rangle = \psi_0|0\rangle + \psi_1|1\rangle$
- $\langle 0|1\rangle = 0$ (Orthogonal basis)
- $|| |0\rangle || = || |1\rangle || = 1$ (Normalized basis)

This ensure logical 0 and 1 is an orthonormal basis of a Hilbert space of dim 2.

Computational basis measurement

The amplitudes of the quantum state on the logical basis (0 and 1) are associated with the outcome probabilities of the computational basis measurement (logical 0 or 1).

Random coins vs quantum coins

Classical coin flip

$$\bar{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - - - \begin{bmatrix} R \\ 0 \end{bmatrix} - - - \bar{p}_{out} = R\bar{v}_0 = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$\bar{p}_{out} = R\bar{v}_0 = \begin{bmatrix} 1/2\\1/2 \end{bmatrix}$$

$$R = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Quantum random number generator circuit

$$|0\rangle$$
 H $P(0) = |\psi_0|^2 = 1/2$ $P(1) = |\psi_1|^2 = 1/2$

$$P(0) = |\psi_0|^2 = 1/2$$

$$P(1) = |\psi_1|^2 = 1/2$$

Random coins vs quantum coins: concatenation

Classical coin flip

$$R = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$\bar{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} R \\ R \end{bmatrix} - \begin{bmatrix} \bar{p}_{out} = ? \end{bmatrix}$$

• Quantum random number generator circuit

$$|0\rangle$$
 — H — H ?

Random coins vs quantum coins: concatenation

Two classical coin flips

$$R = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$\bar{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} R \end{bmatrix} - \begin{bmatrix} R \end{bmatrix} - \begin{bmatrix} \bar{p}_{out} = R^2 \bar{v}_0 = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

Two "quantum coin flips"

$$|0\rangle$$
 — H $|0\rangle$ $|0\rangle$

 $H^2 = I$

To measure or not to measure....

Two "quantum coin flips"

• Two "quantum coin flips" with intermediate measurement

Measurement of orthonormal basis

Any orthonormal basis $\{|v_i\rangle\}$ that span \mathcal{H} has and associated measurement

Probability of outcome *i* reads: $P(i) = |\langle v_i | \psi \rangle|^2$

The quantum state is updated to $|v_i\rangle$

To measure or not to measure....

• Two "quantum coin flips"

• Two "quantum coin flips" with intermediate measurement

In quantum world observing the system can change its dynamics!!

Basis: General case

$$\mathcal{H}\equiv\mathbb{C}^d$$

• Spanning set of \mathcal{H} : set of vectors $|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$

$$\forall |\psi\rangle \in \mathcal{H} : |\psi\rangle = \sum_{i=1}^{n} \psi_{v_i} |v_i\rangle$$
 where amplitudes are given by: $\psi_{v_i} = \langle \psi | v_i \rangle$

• Linearly independent: $\nexists a_1, a_2, ..., a_n \neq 0$ complex numbers

$$a_1|v_1\rangle + \dots + a_n|v_n\rangle = 0$$

- Basis: Span $\{|v_i\rangle\} = \mathcal{H} \Leftrightarrow n = d + \text{Lin. ind.}$
- Orthonormal: $\forall i, j \in \{1, ..., d\}, \langle v_i | v_j \rangle = \delta_{i,j}$
- Has an associated measurement

Example

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Measurement of orthonormal basis

Any orthonormal basis $\{|v_i\rangle\}$ that span \mathcal{H} has and associated measurement

Probability of outcome *i* reads: $P(i) = |\langle v_i | \psi \rangle|^2$

The quantum state is updated to $|v_i\rangle$

Example:+/- basis

 $|\psi\rangle = \psi_0|0\rangle + \psi_1|1\rangle$

$$|\psi\rangle$$
 $P(+)$ $P(-)$

$$\mathcal{H}_{\mathcal{Q}} = \operatorname{Span}\{|+\rangle, |-\rangle\}$$

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$\mathcal{H}_{\mathcal{Q}} = \operatorname{Span}\{|+\rangle, |-\rangle\}$$
$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$P(+) = |\langle +|\psi\rangle|^2 = |\frac{1}{\sqrt{2}}(\langle 1| + \langle 0|)(\psi_0|0\rangle + \psi_1|1\rangle)|^2 = |\psi_0 + \psi_1|^2/2$$

$$P(-) = |\langle -|\psi\rangle|^2 = |\psi_0 - \psi_1|^2/2$$

Arbitrary basis measurement

• Measurement basis $\{|\pm\rangle\}$:

$$\begin{vmatrix} |+\rangle = H|0\rangle \\ |-\rangle = H|1\rangle \\ (A|\psi\rangle)^{\dagger} = \langle \psi|A^{\dagger} \\ H^{\dagger} = H$$

$$\langle +|\psi\rangle = \langle 0|H|\psi\rangle \\ \langle -|\psi\rangle = \langle 1|H|\psi\rangle$$

Arbitrary basis measurement

• Measurement basis $\{|\pm\rangle\}$:

$$|\psi\rangle$$
 \pm \equiv $|\psi\rangle$ H \pm $0/1 \Leftrightarrow \pm$ Measurement \pm basis

• Measurement basis $\{|v_i\rangle\}$:

$$\forall \text{ basis } \{|v_i\rangle\}, \exists U_v \text{ s.t. } |v_i\rangle = U_v|i\rangle \qquad \langle v_i|\psi\rangle = \langle i|U_v^{\dagger}|\psi\rangle$$

References

Reading references

1. NC 2.2.3 and 2.2.5

NC

■ Michael Nielsen and Isaac Chuang, Quantum Computing and Quantum Information Cambridge University Press (2010)

Lecture 10 we will revisit the measurement in terms of projectors

There is even a more general concept of measurement in N&C called POVM (2.2.6) that we will not cover in this course.

Even more general is the concept of quantum instrument.

News and Jobs

News

Social media: follow companies, academics

https://quantumcomputingreport.com/

https://thequantumdaily.com/

Quantum Computing Report
Where Qubits Entangle with Commerce

Contact Us Advertising About Us Sign in / Join

THE QUANTUM DAILY

News :

Job search industry

https://quantumcomputingreport.com/

600 job announcements today!

Companies websites

Job search Academia

https://www.jobs.ac.uk/

https://quantumcomputingreport.com/

https://qt.eu/

Follow the Science

Publications

https://scirate.com/

Conferences

QIP, TQC, QCTiP

https://qipconference.org/

Workshops/schools/semesters

Simon's Institute for the Theory of Computation https://simons.berkelev.edu/

follow academics on social media