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Introduction to Quantum Computing

Lecture 6: Quantum Circuit Model

Raul Garcia-Patron Sanchez



Classical Circuit Model

® C(lassical circuits compute Boolean functions: f:{0,1}" — {0,1}™

T = 2172..7, f(z) - U= y1y2--Ym




Classical Circuit Model

® C(lassical circuits compute Boolean functions: f:{0,1}" — {0,1}™
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@® NAND gates are UNIVERSAL All Boolean functions can be generated with NAND gates.

@ Most circuits are irreversible.
@ Resource count: # gates, depth of circuit (# layers of gates).

® Most Boolean functions need exponential number of gates.



Quantum Circuit Model

® Quantum circuits implement unitaries, U : H®" — H®"
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Quantum Circuit Model

® Quantum circuits implement unitaries, U : H®" — H®"
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® d sets of 1 and 2 qubit gates that are UNIVERSAL

® (Ideal) quantum circuits are reversible.

@ Resource count: # gates, depth of circuit (# layers of gates).

@ Most unitaries need exponential number of gates.



1-qubit gates
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Gates: 2-qubit

Controlled-not gate (cnot gate):
Upx = [0)(0] & T+ |1)(1] @ X —

Controlled-Z gate: 14—
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Universal sets of gates — Clifford + T gates

Clifford Gates _ _ _ Very important role in QC: QEC
;' T \, (Quantum Error Correction)
! AJZFHES fry . Map chain of Pauli to another
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Can be classically simulated! (Gottesman-Knill Th)
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CNOT + Almost any 1-qubit gate “"T'-'x REEEIEER ‘

Almost any 2-qubit gate Certainly not practical!




Hardness of General U
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Shannon: almost all Boolean function require =~ 2" gates.
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/Solovay—Kitaev Theorem

dquantum circuits that require (2" log(1/¢)/log(n)) gates.
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We will be interested in those

. that can be generated with poly(n) gates. )




Quantum Algorithms
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(1) Preparation of an n qubit computational state

(@ Quantum circuit from a universal set of gates

Measurement in the computational basis

[ Efficient if #gates is O(poly(n)). ]




Generality of the model

@ Preparation of another state? lgi o) =
Include the preparation in the circuit 0) T 2
: 0) — B
@ (Qubit not measured 0 [ a ] A
Measure and forget
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® Measurement in another basis? Al ¥
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»® General measurement?
=~ Additional extra qubits, gates and computational measurement.
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9 Irreversible quantum operations?
=" Equivalent to reversible operation with an additional quantum system (environment).



Principle of deferred measurement

a N

An intermediate measurement, even if its classical outcome
controls further operations, can always be postponed to the

end of the circuit.
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We will discuss quantum algorithms in an ideal framework
without error. Then both are equivalent.

In practice you want your quantum circuit as small as short.




DiVincenzo criteria for Quantum Computation

@ Well-defined qubits §
<
e Initialization to a pure state 000...0)
e Long coherence times %(moo 0) 4+ [111...1))
e Universal set of gates x| [Z] [H] [S )T( :+: T :

@ Single qubit measurements AZN .,
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