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Problem 1: SWAP Test

Given the two-qubit SWAP gate: 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


and the two single-qubit states |ϕ1⟩ = a |0⟩+ b |1⟩ and |ϕ2⟩ = c |0⟩+ d |1⟩.
a. Show that USWAP |ϕ1⟩ ⊗ |ϕ2⟩ = |ϕ2⟩ ⊗ |ϕ1⟩

Solution: We have |ϕ1⟩ ⊗ |ϕ2⟩ = ac |00⟩ + ad |01⟩ + bc |10⟩ + bd |11⟩. The action of the
SWAP gate is to exchange |10⟩ and |01⟩, leading to

USWAP |ϕ1⟩ ⊗ |ϕ1⟩ = ac |00⟩+ bc |01⟩+ ad |10⟩+ bd |11⟩ (1)

= c |0⟩ ⊗ (a |0⟩+ b |1⟩) + d |1⟩ ⊗ (a |0⟩+ b |1⟩) (2)

= (c |0⟩+ d |0⟩)⊗ (a |0⟩+ b |1⟩) (3)

= |ϕ2⟩ ⊗ |ϕ1⟩ (4)

b. Consider the following SWAP test circuit acting on the two states |ϕ1⟩ and |ϕ2⟩.

|0⟩ H H

|ϕ1⟩
USWAP

|ϕ2⟩

Give the quantum state of the three qubit system at each step of the circuit.

Solution: The input to the circuit reads |ψ0⟩ = |0⟩⊗ |ϕ1⟩⊗ |ϕ2⟩. After the first Hadamard
gate, the state reads

|ψ1⟩ = H ⊗ I ⊗ I |0⟩ ⊗ |ϕ1⟩ ⊗ |ϕ2⟩ (5)

=
|0⟩+ |1⟩√

2
⊗ |ϕ1⟩ ⊗ |ϕ2⟩ (6)

After the controlled SWAP, the state reads

|ψ2⟩ =
1√
2
[|0⟩ ⊗ |ϕ1⟩ ⊗ |ϕ2⟩+ |1⟩ ⊗ |ϕ2⟩ ⊗ |ϕ1⟩] (7)
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After the last Hadamard gate, the state reads

|ψ3⟩ =
1

2
[(|0⟩+ |1⟩)⊗ |ϕ1⟩ ⊗ |ϕ2⟩+ (|0⟩ − |1⟩)⊗ |ϕ2⟩ ⊗ |ϕ1⟩]

= |0⟩ ⊗ 1

2
[|ϕ1⟩ ⊗ |ϕ2⟩+ |ϕ2⟩ ⊗ |ϕ1⟩] + |1⟩ ⊗ 1

2
[|ϕ1⟩ ⊗ |ϕ2⟩ − |ϕ2⟩ ⊗ |ϕ1⟩]

c. Compute the probability P (0) of obtaining the outcome 0 at the top qubit, the probability
P (1) of obtaining the outcome 1, and their bias P (0)− P (1).

Solution: The probability of outcome result correspond to ||Π̃0 |ψ3⟩ ||2 = ⟨ψ3| Π̃0 |ψ3⟩. It is
easy to see that

Π̃0 |ψ3⟩ = |0⟩ ⊗ 1

2
[|ϕ1⟩ ⊗ |ϕ2⟩+ |ϕ2⟩ ⊗ |ϕ1⟩] . (8)

Then the probability of its outcome reads

⟨ψ3| Π̃0 |ψ3⟩ =
1

4
[⟨ϕ1| ⊗ ⟨ϕ2|+ ⟨ϕ2| ⊗ ⟨ϕ1|] [|ϕ1⟩ ⊗ |ϕ2⟩+ |ϕ2⟩ ⊗ |ϕ1⟩]

=
1

4
+

1

4
⟨ϕ2|ϕ1⟩⟨ϕ1|ϕ2⟩+

1

4
⟨ϕ1|ϕ2⟩⟨ϕ2|ϕ1⟩+

1

4
(9)

=
1

2
+

1

2
⟨ϕ1|ϕ2⟩⟨ϕ1|ϕ2⟩∗ (10)

=
1

2
+

1

2
|⟨ϕ2|ϕ1⟩|2 (11)

A similar calculation as above leads to:

P (1) =
1

2
− 1

2
|⟨ϕ2|ϕ1⟩|2. (12)

Therefore, the bias of probabilities reads P (0)− P (1) = |⟨ϕ2|ϕ1⟩|2.

Problem 2: Quantum Fourier Transform

As you have seen in the lectures, we can represent any integer z in its binary form as:

z = z1z2 . . . zn

where z1, z2, . . . , zn are such so that:

z = z12
n−1 + . . .+ zn−12

1 + zn

2



Raul Garcia-Patron
Stuart Ferguson Tutorial 5

IQC 2025-26
October 30, 2025

a. How many qubits at least would we need to encode the integer states |14⟩ and |9⟩? What
is their binary representation when using qubits to encode the integers?

Solution: In order to represent an integer state |N⟩, one would require at least n =
⌈log(N + 1)⌉ qubits. This implies that for both cases we require 4 qubits. The binary
representation of these four-qubit integer states is:

|14⟩ = |1110⟩
|9⟩ = |1001⟩

b. Recall that:
0.zlzl+1 . . . zm ≡ zl

2
+
zl+1

22
+ · · ·+ zm

2m−l+1

Calculate:

1. 23 · 0.z1z2z3, 22 · 0.z1z2z3 and 2 · 0.z1z2z3, where zi ∈ {0, 1}.

2. e2πi·2
2·0.j1j2j3 where ji ∈ {0, 1}.

Solution: We start by writing down the expression for 0.z1z2z3:

0.z1z2z3 =
z1
2
+
z2
4
+
z3
8

Then it is easy to calculate the expressions above. For the first case, we have:

23 · 0.z1z2z3 = 4z1 + 2z2 + z3

22 · 0.z1z2z3 = 2z1 + z2 +
z3
2

2 · 0.z1z2z3 = z1 +
z2
2
+
z3
4

For the second case:

e2πi·2
2·0.j1j2j3 = e2πi(2j1+j2+j3/2) = e2πi(2j1+j2)e2πij3/2 = e2πi0.j3 ,

where in the second equality we used the fact that 2j1 + j2 is an integer and therefore
e2πi(2j1+j2) = 1.

c. Now consider the quantum Fourier circuit for three qubits:

3



Raul Garcia-Patron
Stuart Ferguson Tutorial 5

IQC 2025-26
October 30, 2025

H S T

H S

H

with S and T being the gates:

S =

(
1 0
0 eiπ/2

)
=

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
Suppose that we input the state |j⟩ = |j1j2j3⟩. What will be the output state?

Solution: We start as usual by dividing the quantum circuit into subsequent steps:

H S T

H S

H

1 2 3 4 5 6 7

Initially, the system is in the state:

|ψ⟩0 = |j1j2j3⟩

Then we act with the Hadamard operator on the first qubit and use the fact that e2πi0.j1 is
+1 if j1 = 0 and −1 if j1 = 1. Thus the state at step 1 is transformed to:

|ψ⟩1 =
1

21/2
(|0⟩+ e2πi0.j1 |1⟩) |j2j3⟩

Recall that the unitary operator Rk is defined as:

Rk =

(
1 0

0 e2πi/2
k

)
It’s easy to see that both S and T are special cases of the operator Rk for two different
choices of k. S corresponds to R2 while T corresponds to R3.

On the next step, applying the S operator on the first qubit controlled by the second qubits
produces the state:

|ψ⟩2 =
1

21/2
(|0⟩+ e2πi0.j1e2πi0.0j2 |1⟩) |j2j3⟩ =

1

21/2
(|0⟩+ e2πi0.j1j2 |1⟩) |j2j3⟩
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Next, we perform the controlled-T operation and so we get:

|ψ⟩3 =
1

21/2
(|0⟩+ e2πi0.j1j2e2πi0.00j3 |1⟩) |j2j3⟩ =

1

21/2
(|0⟩+ e2πi0.j1j2j3 |1⟩) |j2j3⟩

If we work with the exact same way for the rest of the steps we will get:

Step 4:

|ψ⟩4 =
1

2
(|0⟩+ e2πi0.j1j2j3 |1⟩)(|0⟩+ e2πi0.j2) |j3⟩

Step 5:

|ψ⟩4 =
1

2
(|0⟩+ e2πi0.j1j2j3 |1⟩)(|0⟩+ e2πi0.j2j3) |j3⟩

Step 6:

|ψ⟩4 =
1

23/2
(|0⟩+ e2πi0.j1j2j3 |1⟩)(|0⟩+ e2πi0.j2j3)(|0⟩+ e2πi0.j3 |1⟩)

At the final step, we swap the state of the first and third qubit and recover the quantum
Fourier transformation:

|ψ⟩4 =
1

23/2
(|0⟩+ e2πi0.j3 |1⟩)(|0⟩+ e2πi0.j2j3)(|0⟩+ e2πi0.j1j2j3 |1⟩)

Problem 3: Order-Finding

For two positive integers x and N with x < N the order of x modulo N is defined to be the
least positive integer such that:

xr = 1 mod N

a. Show that for x = 2 and N = 5 we have r = 4.

Solution: It’s easy to see that for r = 4:

24 = 3× 5 + 1,

which implies 24 = 1 mod 5. Similarly, one can show that 23 = 3 mod 5 and 22 = 4 mod 5.
Therefore, r = 4 is the least integer such that 24 = 1 mod 5.

Note: Remark that modular exponentiation is a periodic function of period r. You can
check that for x = 3 we also obtain r = 4, but for x = 4 we have r = 2, the latest can be
easily derived from the case of x = 2.

5



Raul Garcia-Patron
Stuart Ferguson Tutorial 5

IQC 2025-26
October 30, 2025

b. Now consider the transformation Ux which acts on the computational basis states as
follows:

Ux |y⟩ ≡ |xy mod N⟩

Prove that:

1. UxUx′ = Uxx′

2. Ux−1 = U−1
x = U †

x.

3. UxU
†
x = U †

xUx = I, which proves it is an unitary transformation.

4. U r
x = I where r is the period of x modulo N .

Solution: We start with the first property, which result from the associativity of the
multiplication of integer mod N . We have:

UxUx′ |y⟩ = Ux |x′y mod N⟩ = |xx′y mod N⟩
Uxx′ |y⟩ = |xx′y mod N⟩

and thus:
UxUx′ = Uxx′ = Ux′Ux

We continue with the second property:

Ux−1Ux |y⟩ = Ux−1 |xy mod N⟩ = |y⟩

and thus:
Ux−1 = U−1

x

Now for the second part of the second property:

⟨y|U †
xUx |y⟩ = ⟨yx mod N |yx mod N⟩ = 1

and thus U †
xUx = I and so the inverse of Ux is U †

x, i.e.:

Ux−1 = U−1
x = U †

x

The third property follows immediately from the previous property as UxU
†
x = UxU

−1
x = I =

U †
xUx and thus Ux is a unitary operator.

Then for the final property we have:

UxUx . . . Ux︸ ︷︷ ︸
r

|y⟩ = |xry mod N⟩ = |y⟩
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and so we proved that:
U r
x = I

c. Show that the states:

|us⟩ ≡
1√
r

r−1∑
k=0

e−
2πisk

r |xk mod N⟩

for integer 0 ≤ s ≤ r − 1 are eigenstates of Ux. What is their corresponding eigenvalues?

Solution: If we act with Ux on the states |us⟩ we get:

Ux |us⟩ =
1√
r

r−1∑
k=0

e−
2πisk

r Ux |xk mod N⟩

=
1√
r

r−1∑
k=0

e−
2πisk

r |xk+1 mod N⟩ = 1√
r

r∑
k′=1

e−
2πis(k′−1)

r |xk′ mod N⟩

where in the last step we switched the variable k with the variable k′ = k+1. If we continue
with the calculation we have:

Ux |us⟩ = e2πis/r
1√
r

r∑
k′=1

e−
2πisk′

r |xk′ mod N⟩

But recall that r is the order of x modulo N and so xr = 1 mod N . It’s easy to see then
that the sum in the expression can be replaced to:

r∑
k′=1

→
r−1∑
k=0

,

as it correspond only to a reordering of the same sum (a shift to the left of a closed cycle).

Thus, we can conclude that |us⟩ is an eigenstate of the operator Ux with eigenvalue e2πis/r:

Ux |us⟩ = e2πis/r |us⟩

d. As you can see preparing the state |us⟩ requires that we know r in advance. Fortunately
there is clever observation which circumvents the problems of preparing |us⟩. Show that:
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1.
r−1∑
s=0

e−2πisk/r = rδk,0

2.
1√
r

r−1∑
s=0

e2πisk/r |us⟩ = |xk mod N⟩

which has as special case when k = 0:

1√
r

r−1∑
s=0

|us⟩ = |1⟩ ,

which is a trivial state to generate. This opens the door to applying quantum phase-
estimation to sample from φ = s/r, which later leads to a guess of r as explained in the
lecture on Shor’s algorithm.

Solution: Consider the first expression and let k = 0. It’s easy to see that we have a sum
of r terms, all equal to the identity and thus:

r−1∑
s=0

e−2πisk/r = r if k = 0

Now consider k ̸= 0. The sum then corresponds to a geometric series which is equal to:

r−1∑
s=0

e−2πisk/r =
1− e−2πik

1− e−2πik/r
= 0

for every k ∈ Z with k ̸= 0. Thus we can conclude that:

r−1∑
s=0

e−2πisk/r = rδk,0

For the second expression we have:

1√
r

r−1∑
s=0

e2πisk/r |us⟩ =
1√
r

r−1∑
s=0

[
e2πisk/r

1√
r

r−1∑
k′=0

e−
2πisk′

r |xk′ mod N⟩

]

=
1

r

r−1∑
s=0

r−1∑
k′=0

e2πis(k−k′)/r |xk mod N⟩ = 1

r

r−1∑
k′=0

rδ0,k−k′ |xk
′

mod N⟩
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where in the last equality we used the result from expression 1. It’s trivial to see that
δ0,k−k′ = δk,k′ and the sum over k′ contributes only when k′ = k. Thus:

1√
r

r−1∑
s=0

e2πisk/r |us⟩ = |xk mod N⟩ .

The case k = 1 is only a corollary of this last result, leading to the input state |1⟩ used in
the order finding algorithm.

e. If we wanted to apply a phase estimation procedure we must have efficient procedures to
implement a controlled-U2j operation for any integer j. Given an integer number x, propose
a technique to compute x2

k
that scales linearly in k.

Solution: if we want to compute x2
k
an inefficient approach is to multiply 2k times x. A

more efficient approach is to square iteratively, i.e., we apply the function y2 mod N k times
to the input x. It is easy to see then that we get the series x2, x4, x2

3
,..., x2

k
. Because the

multiplication is mod N , the memory register does not need to increase, as it will never be
larger than N .

f. Assuming that we are given an unitary S such that implements S|x⟩ = |x2 mod N⟩ that
needs O(L2) gates, where L = ⌈logN⌉, i.e., the size of the register. How many gates we will
be needed to implement |x⟩ → |x2k mod N⟩?

Solution: We are given that the unitary S is such that implements S|x⟩ = |x2 mod N⟩
using O(L2) gates. Clearly if we want to implement |x⟩ → |x2k mod N⟩ we need to apply S
k times, which lead to an asymptotic scaling O(kL2) of number of gates. Because in phase
estimation we need to implement up to U2k where k ∈ {0, 2L+1}, it is easy to see that need
O(L3) gates.

Extra problem: Three-Qubit Parity Check

We want to perform an even/odd parity check on qubits 1, 2, 4. It’s easy to see that the
parity operator P = Z ⊗ Z ⊗ I ⊗ Z is both Hermitian and Unitary, so that it can both be
regarded as an observable and a quantum gate. Suppose we wish to measure the observable
P . That is, we desire to obtain a measurement result indicating one of the two eigenvalues,
and leaving an updated state after the measurement that is projected to its corresponding
eigenspace. We are going to show that the following circuit implements a measurement of P :
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|[phase, ]|

|[phase, ]|

|[phase, ]|

|0⟩ H H

|ψ⟩

Z

|ψ′⟩Z

Z

a. Derive the action of the three-qubit parity operator P = Z⊗Z⊗I⊗Z on the computational
basis state |x1x2x3x4⟩. What are the eigenvalues of the operator P?

Solution: Recall that the state |x1x2x3x4⟩ corresponds to the tensor product:

|x1x2x3x4⟩ ≡ |x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ |x4⟩

We can use the property:

P |x1x2x3x4⟩ = (Z ⊗ Z ⊗ I ⊗ Z) (|x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ ⊗ |x4⟩)
= Z |x1⟩ ⊗ Z |x2⟩ ⊗ I |x3⟩ ⊗ Z |x4⟩ = (−1)x1 |x1⟩ ⊗ (−1)x2 |x2⟩ ⊗ |x3⟩ ⊗ (−1)x4 |x4⟩

=⇒ P |x1x2x3x4⟩ = (−1)x1+x2+x4 |x1x2x3x4⟩

We can see that when P acts on a computational basis, it is scaled by a factor of −1 or +1
depending on the bits xi. This means that the computational basis states are the eigenvectors
of P with eigenvalues ±1.

b. Derive the global state right before the measurement of the upper-qubit when the input
state reads |0⟩ ⊗ |ψ⟩, where |ψ⟩ =

∑
x∈{0,1}4 γx|x⟩ is a four qubit arbitrary input state and x

is a four bit string.

Solution: First of all, we are going to divide the quantum circuits into subsequent steps
and calculate the composite state in each one of them.
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|[phase, ]|

|[phase, ]|

|[phase, ]|

|0⟩ H H

|ψ⟩

Z

|ψ′⟩Z

Z

1 2 3

The initial state of the composite system of 5 qubits is:

|ψ⟩0 = |0⟩ ⊗ |ψ⟩ =
∑

x∈{0,1}4
γx |0⟩ |x⟩

Step 1: On the first step, we act with the Hadamard operator on the first qubit and get:

(H ⊗ I) |ψ⟩0 =
∑

x∈{0,1}4
γxH |0⟩ |x⟩ =

∑
x∈{0,1}4

γx
1√
2
(|0⟩+ |1⟩) |x⟩

∑
x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩ |x⟩

and so the state |ψ⟩1 at step 1 is:

|ψ⟩1 =
∑

x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩ |x⟩

Step 2: On the second step, we act with the controlled-P operator and get:

CP |ψ⟩1 =
∑

x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩P |x⟩

Note that x is the bitstring x1x2x3x4. Thus, by using the answer of question (a.) we get that
the state |ψ⟩2 at step 2 is:

|ψ⟩2 =
∑

x∈{0,1}4

γx√
2
|0⟩ |x⟩+

∑
x∈{0,1}4

γx√
2
|1⟩ (−1)x1+x2+x4 |x⟩

=
∑

x1+x2+x4=even

γx |+⟩ |x⟩+
∑

x1+x2+x4=odd

γx |−⟩ |x⟩
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Step 3: On the third step, we act again with the Hadamard operator on the first qubit and
get:

|ψ⟩3 =
∑

x1+x2+x4=even

γx |0⟩ |x⟩+
∑

x1+x2+x4=odd

γx |1⟩ |x⟩

|ψ⟩3 = |0⟩ ⊗

( ∑
x1+x2+x4=even

γx |x⟩

)
+ |1⟩ ⊗

( ∑
x1+x2+x4=odd

γx |x⟩

)

c. Using the rules of partial measurement, show that the measurement of the upper-qubit
projects the state of the lower four qubits to its odd or even parity subspaces, depending on
the outcome being 0 or 1.

Solution: The partial measurement of the first qubit can be described as the linear operator
Pi⊗ I = |i⟩ ⟨i|⊗ I with i ∈ {0, 1}. If we perform the measurement on the first qubit and find
it in the |0⟩ state, then the system after the measurement will be in the state:

|ψ⟩ = P0 ⊗ I |ψ⟩3
||P0 ⊗ I |ψ⟩3 ||

= |0⟩ ⊗ 1

(
∑

x1+x2+x4=even |γx|2)1/2

( ∑
x1+x2+x4=even

γx |x⟩

)
On the other hand, if we measure it to be in the state |1⟩ then the state of the system after
the measurement will be:

|ψ⟩ = P1 ⊗ I |ψ⟩3
||P1 ⊗ I |ψ⟩3 ||

= |1⟩ ⊗ 1

(
∑

x1+x2+x4=odd |γx|2)1/2

( ∑
x1+x2+x4=odd

γx |x⟩

)

d. Prove that the two circuits below are equivalent:

|0⟩ H H

Z

= |0⟩

Solution: Consider the second qubit to be in the general state |ψ⟩ = a |0⟩+ b |1⟩. We split
the first circuit into three parts.

|0⟩ H H

Z

1 2 3
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The initial state of the composite system is:

|ψ⟩0 = a |00⟩+ b |01⟩

Step 1:

|ψ⟩1 = (H ⊗ I) |ψ⟩0 =
a√
2
(|00⟩+ |10⟩) + b√

2
(|01⟩+ |11⟩)

Step 2:

|ψ⟩2 = CZ |ψ⟩1 =
a√
2
(|00⟩+ |10⟩) + b√

2
(|01⟩ − |11⟩)

= a |+⟩ |0⟩+ b |−⟩ |1⟩

Step 3:

|ψ⟩3 = (H ⊗ I) |ψ⟩2 = a |0⟩ |0⟩+ b |1⟩ |1⟩

We consider again the same input on the second circuit:

|0⟩
1

We can see that if we start with the same input:

|ψ⟩0 = a |00⟩+ b |01⟩

then after the action of the controlled-NOT with the control being the second qubit we have:

|ψ⟩1 = a |00⟩+ b |11⟩

We can thus conclude that the two circuits are equivalent.

e. Prove that we can achieve the same result with the circuit:

|0⟩

|ψ⟩ |ψ′⟩

13
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Solution: In the same manner, we break the circuit into subsequent steps:

|0⟩

|ψ⟩ |ψ′⟩

1 2 3

The initial state of the system is:

|ψ⟩0 = |0⟩ ⊗ |ψ⟩ =
∑

x∈{0,1}4
γx |0⟩ |x⟩

Step 1:

|ψ⟩1 =
∑

x∈{0,1}4
γx |0⊕ x1⟩ |x⟩

Step 2:

|ψ⟩2 =
∑

x∈{0,1}4
γx |0⊕ x1 ⊕ x2⟩ |x⟩

Step 3:

|ψ⟩3 =
∑

x∈{0,1}4
γx |0⊕ x1 ⊕ x2 ⊕ x4⟩ |x⟩

=⇒ |ψ⟩3 = |0⟩ ⊗

( ∑
x1+x2+x4=even

γx |x⟩

)
+ |1⟩ ⊗

( ∑
x1+x2+x4=odd

γx |x⟩

)

We can see that in both cases the output state is the same. We can thus conclude that the
two circuits are equivalent.

Alternative solution:

We can rewrite the original circuit by splitting the controlled-multi-Z gate into individual
gates (as they are independent of each other, and have the same control qubit):
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|0⟩ H H

|ψ⟩

Z

|ψ′⟩Z

Z

Now we can insert double Hadamard gates in between controlled-Z gates, as they are equiv-
alent to identity:

|0⟩ H H H H H H

|ψ⟩

Z

|ψ′⟩Z

Z

Using the results from d, this is equivalent to:

|0⟩

|ψ⟩ |ψ′⟩
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