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Problem 1

Consider a 2-dimensional Hamiltonian H, where |+π
4
⟩ is the eigenvector with 0 eigenvalue

and |−π
4
⟩ is the other eigenvector with eigenvalue 1. Recall that you can always write an

operator as the sum of the product of an eigenvalue with the projection to the corresponding
eigenspace.

a. Write the Hamiltonian in terms of the eigenvectors and in matrix form (in the computa-
tional basis).

Solution:

H = 0 |+π
4
⟩ ⟨+π

4
|+ 1 |−π

4
⟩ ⟨−π

4
| = |−π

4
⟩ ⟨−π

4
| = 1

2

(
1 −e−iπ

4

−eiπ4 1

)

b. Express H =
∑

i ciPi in terms of Pauli matrices (Pi ∈ {I,X, Y, Z}) using the formula for
calculating the coefficients ci given in the lecture, and for simplicity here too: ci = ⟨Pi,H⟩,
where ⟨A,B⟩ := Tr(A†B)

2
.

Solution:

H =
3∑

i=0

αiPi = α0I + α1X + α2Y + α3Z

To calculate the αi coefficients, we use the above formula:

α0 = ⟨I,H⟩ = Tr(H)

2
=

1

2

α1 = ⟨X,H⟩ =
Tr(X |−π

4
⟩ ⟨−π

4
|)

2
=

1

2
(⟨−π

4
|X |−π

4
⟩)

⟨−π
4
|X |−π

4
⟩ = 1

2
(⟨0| − e−iπ

4 ⟨1|)(|1⟩ − ei
π
4 |0⟩) = 1

2
(−ei

π
4 − e−iπ

4 ) = − cos
π

4
= −

√
2

2

And the coefficient is:

α1 = −
√
2

4
For the Z operator we have:

Z |−π
4
⟩ = |+π

4
⟩

We can calculate the fourth coefficient:

α3 = ⟨Z,H⟩ =
Tr(Z |−π

4
⟩ ⟨−π

4
|)

2
=

1

2
(⟨−π

4
|Z |−π

4
⟩) = 1

2
(⟨−π

4
|+π

4
⟩) = 0
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Finally, for Pauli Y = −iZX we have:

α2 = ⟨Y,H⟩ =
Tr(−iZX |−π

4
⟩ ⟨−π

4
|)

2
=

−i
2
(⟨−π

4
|ZX |−π

4
⟩) = −i

2
√
2
(⟨−π

4
|Z(|1⟩ − ei

π
4 |0⟩))

α2 =
−i
4
(⟨0| − e−iπ

4 ⟨1|)(− |1⟩ − ei
π
4 |0⟩) = i

4
(ei

π
4 − e−iπ

4 ) =
i

4
(2i sin

π

4
) = −

sin π
4

2
= −

√
2

4

So the decomposition of the Hamiltonian will be:

H =
1

2
(I −

√
2

2
(X + Y ))

c. Evaluate the output state |ψ(θ)⟩ given by the following parametrised circuit :

|0⟩ H R(θ) |ψ(θ)⟩

Solution: The output of the circuit can be evaluated as follows:
After the first Hadamard gate, the |0⟩ state will be transformed to |+⟩. Then, by performing
the R(θ) gate, we will have:

|ψ(θ)⟩ = R(θ) |+⟩ = 1√
2

(
1 0
0 eiθ

)(
1
1

)
=

1√
2

(
1
eiθ

)
=

1√
2
(|0⟩+ eiθ |1⟩)

d. For any state express E(θ) := ⟨ψ(θ)|H |ψ(θ)⟩ by using part b, in terms of ⟨ψ(θ)|Pi |ψ(θ)⟩.
Solution:

E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ = 1

4
⟨ψ(θ)| (2I + (−

√
2)(X + Y )) |ψ(θ)⟩ =

1

4
(2 + (−

√
2)(⟨ψ(θ)|X |ψ(θ)⟩+ ⟨ψ(θ)|Y |ψ(θ)⟩))

First, note that
√
2 can be written as:

√
2 = 2 cos

π

4
= 2 sin

π

4

Then, the expectation values of X and Y are:

⟨ψ(θ)|X |ψ(θ)⟩ = 1

2
(e−iθ + eiθ) = cos θ

⟨ψ(θ)|Y |ψ(θ)⟩ = −i
2
(eiθ − e−iθ) = sin θ
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If we replace the above equations in the expectation value E(θ), we get:

E(θ) =
1

4
[2− 2(cos θ cos

π

4
+ sin θ sin

π

4
)] =

1− cos(θ − π
4
)

2

e. Now find the ground state with the following steps:

• Start from θ0 = 0

• Estimate the gradient in each step using ∆(θi) = E(θi+ δθ)−E(θi− δθ) where δθ = π
8

• Update θ accordingly by moving in the opposite direction of the gradient by a step δθ,
i.e. set θ1 = θ0 ± δθ with the sign determined by the computed gradient

• Continue this for another two steps and find the value of θ which minimises ⟨H⟩.

Solution: For θ0 = 0 and δθ = π
8

∆(θ0) = E(
π

8
)− E(−π

8
) =

1

2
(cos(

π

8
− π

4
)− cos(−π

8
− π

4
)) =

1

2
(cos(

3π

8
)− cos(

π

8
)) ≈ −0.27

The gradient is negative. We move in the opposite direction of the gradient, so we need to
go to larger values of θ. We update the θ as:

θ1 = θ0 + δθ =
π

8

Now we repeat the last step for θ1 and we calculate the gradient:

∆(θ1) = E(
π

8
+
π

8
)− E(

π

8
− π

8
) = E(

π

4
)− E(0) =

1

2
(− cos(0) + cos(−π

4
)) =

1

2
(−1 +

√
2

2
)

Again, the gradient is negative, so we update the θ with the larger value. The next θ is:

θ2 = θ1 + δθ =
π

8
+
π

8
=
π

4

And the gradient is:

∆(θ2) = E(
π

4
+
π

8
)− E(

π

4
− π

8
) = E(

3π

8
)− E(

π

8
) =

1

2
(− cos(

π

8
) + cos(−π

8
)) = 0

The gradient is zero and we have found the minimum. θ = π
4
minimizes the energy. This

can also be checked by taking the derivation of E(θ) and finding the minimum value of the
function.
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Problem 2

Consider the cost function of a Binary Optimisation problem with up to cubic terms:

C(x) =
∑
i

aixi +
∑
i,j

bijxixj +
∑
i,j,k

cijkxixjxk

Each of xi is a binary variable xi ∈ {0, 1}, and the index i runs from 1 to n. Finding the
configuration with the smallest cost gives a general cubic, n-binary-variables optimisation
problem. For a number of reasons, one may be interested in turning this problem to a
Quadratic Unconstrained Binary Optimisation (QUBO) problem, i.e. restricting the cost
function to a cost function that has at most quadratic terms (but no cubic terms).

a. Let g(x, y) := (2 − xi − xj − xk)y = 2y − xiy − xjy − xky, where y ∈ {0, 1} is another,
new, binary variable. Show that the following functions are the same:

f(x) = −xixjxk
= min

y
g(x, y)

This proves that we can replace cubic terms −xixjxk with quadratic ones (2−xi−xj −xk)y
with the cost of introducing (in this case a single) extra variable y. Note, that we are
interested in the minimum value of the cost function (i.e. we are taking the minimum of this
expression over all binary variables, including the newly introduced y).

Solution: We will prove that for every possible configuration xixjxk with xi ∈ {0, 1} the
two functions above are equivalent. Let x = (xi, xjxk), then:

x = (0, 0, 0) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
2y = 0

x = (0, 0, 1) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
(2y − y) = 0

x = (0, 1, 0) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
(2y − y) = 0

x = (0, 1, 1) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
(2y − y − y) = 0

x = (1, 0, 0) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
(2y − y) = 0

x = (1, 0, 1) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
(2y − y − y) = 0

x = (1, 1, 0) =⇒ f(x) = 0 and min
y
g(x, y) = min

y
(2y − y − y) = 0

x = (1, 1, 1) =⇒ f(x) = −1 and min
y
g(x, y) = min

y
(2y − y − y − y) = −1

Intuitively, we see that unless xi = xj = xk = 1 the term (2−xi−xj−xk) is non-negative, thus
it is minimised when we multiply it with y = 0 giving cost 0 in agreement with the product
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of −xixjxk (since at least one of the variables is zero). In the case that xi = xj = xk = 1,
then (2− xi − xj − xk) is −1 and thus we get minimum when y = 1, leading to total cost of
−1, again in agreement with −xixjxk for the same case.

So we can see that we can replace every term −xixjxk with quadratic ones miny(2 − xi −
xj − xk)y with the cost of introducing (in this case a single) extra variable y. By doing so,
we can reduce any cubic binary optimisation problem to a quadratic one.

b. Find how we reduce the order of a cost function that has fourth order terms of the form
xixjxkxl and make it quadratics (i.e. an expression with at most quadratic terms).

Solution: We define a new function h(x, y) := (3 − xi − xj − xk − xl)y. It’s easy to see
that:

min
y
h(x, y) = −xixjxkxl

In fact, we can generalise and replace every term with n binary variables −x0 . . . xn−1 with
the function:

h(x, y) =

[
(n− 1)−

n−1∑
i=0

xi

]
y

that has only up to quadratic terms. Then:

min
y
h(x, y) = −x0 . . . xn−1

c. Consider the cost function:

C(x) = −5x1x2x3x4 + x2 + 2x3

Using the result of b. reduce the order to quadratic. Then change the variables to spins
using this xi =

1−si
2

. Construct a Hamiltonian HC by replacing each spin variable si with
the Pauli Zi gate. Finally, calculate the expectation value ⟨ψ|HC |ψ⟩ of the state |ψ⟩ if
|ψ⟩ = a |00000⟩+ b |01011⟩ where the last qubit denotes the extra qubit, i.e. |s1s2s3s4y⟩.

Solution: We start by mapping the cost function C(x) to the cost function C(x, y) by
introducing an extra bit y and replacing the term −5x1x2x3x4:

C(x) → C(x, y) = 5(3− x1 − x2 − x3 − x4)y + x2 + 2x3

=⇒ C(x, y) = 15y − 5x1y − 5x2y − 5x3y − 5x4y + x2 + 2x3
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Now, we can change every binary variable xi to a spin variable si where xi =
1−si
2

, i.e.:

C(s, sy) = 4− 5

2
sy +

5

4
s1 +

3

4
s2 +

1

4
s3 +

5

4
s4 −

5

4
(s1sy + s2sy + s3sy + s4sy)

Now, we can construct a Hamiltonian HC by replacing each variable si with the Pauli Zi

gate. Thus:

HC = 4− 5

2
Zy +

5

4
Z1 +

3

4
Z2 +

1

4
Z3 +

5

4
Z4 −

5

4
(Z1Zy + Z2Zy + Z3Zy + Z4Zy)

Recall that for a computational basis state |x⟩, Z |x⟩ = (−1)x |x⟩. Initially, we will find the
expectation value of the state |00000⟩:

F1 = ⟨00000|HC |00000⟩ = 0

Then, for the second state:
F2 = ⟨01011|HC |01011⟩ = 6

So the total expectation value is:

⟨ψ|HC |ψ⟩ = 0|a|2 + 6|b|2
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