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Problem 1

Consider a 2-dimensional Hamiltonian H, where |+=) is the eigenvector with 0 eigenvalue
and "%) is the other eigenvector with eigenvalue 1. Recall that you can always write an
operator as the sum of the product of an eigenvalue with the projection to the corresponding
eigenspace.

a. Write the Hamiltonian in terms of the eigenvectors and in matrix form (in the computa-
tional basis).

b. Express H =) . ¢;F; in terms of Pauli matrices (P, € {I, X, Y, Z}) using the formula for
calculating the coefficients ¢; given in the lecture, and for simplicity here too: ¢; = (P, H),
where (A, B) := %TB).

Solution:
3
H = ZOCZPZ = @0]+041X+CY2Y+0132
i=0

To calculate the «; coefficients, we use the above formula:

Tr(H) 1
f— I f— = —
0 = {I,H) 2 2
Tr(X|—=z)(—=z]) 1
ap = (X, H) = 5 =5~z X]=-5))
1 iz i B 1 i TN m \/é
(3 X|=g) = 5(0] = T {1y = ¢F]0)) = 5 (~eF — ) = —cos ] = - L
And the coefficient is:
_ V2
o = — 1
For the Z operator we have:
Z|-z)=|+z)
We can calculate the fourth coefficient:
Tr(Z|—==)(—=]) 1 1
0 = (2, H) = =T L 2] = Sl =0
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Finally, for Pauli Y = —iZ X we have:

or = (v = LI 2 ) = 1201 - ¢ o))
S 2 2 4 g p
o2 = ZH(0] = e (A (= 1) = ¢ [0)) = £ - eiF) = Lisin Ty = T0E _ V2

So the decomposition of the Hamiltonian will be:

" = %(1— ?(XJrY))

c. Evaluate the output state [¢)(0)) given by the following parametrised circuit :

0) —{H}—{R() ¥(9))

Solution: The output of the circuit can be evaluated as follows:
After the first Hadamard gate, the |0) state will be transformed to |+). Then, by performing
the R(6) gate, we will have:

oy =re == (o b ) (1) =75 (b ) = 500+

d. For any state express E(6) := ((0)| H |¢(0)) by using part b, in terms of (¢(0)| P; [1(0)).
Solution:

E(0) = (@) H[y(0) = i (W(O)] (21 + (—V2)(X +Y)) [(9)) =

12+ VDO X [90) + (6] Y [60))

First, note that V2 can be written as:

e e
2 =2cos — = 2sin —
\/_ COS4 51n4

Then, the expectation values of X and Y are:

((0)] X () = %(aw ) — cosh

W(0)] Y [ (0)) = ‘{(ew ) — sing
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If we replace the above equations in the expectation value F(6), we get:

! 1-— g—r«
E(0) = 1[2 — 2(cos f cos % + sinQSin%)} = COSZ( 4)

e. Now find the ground state with the following steps:

e Start from 0y =0
e DEstimate the gradient in each step using A(6;) = E(0; + 66) — E(0; — 00) where 06 = T

e Update 0 accordingly by moving in the opposite direction of the gradient by a step 46,
i.e. set 01 = 6y + 00 with the sign determined by the computed gradient

e Continue this for another two steps and find the value of § which minimises ().

Solution: For 05 =0 and 66 = 2

A(0o) = E(g) — E(—%) = %(cos(g — %) - COS(—E — z)) = %(cos(%r) — cos(g)) ~ —0.27

The gradient is negative. We move in the opposite direction of the gradient, so we need to
go to larger values of §. We update the 0 as:

m
91:90+59:§

Now we repeat the last step for 6; and we calculate the gradient:

A(0) = E(= + )— E(0) = %(—COS(O) + COS(—%)) = %(—1 + \/75)

oo| 3

Again, the gradient is negative, so we update the 6 with the larger value. The next 6 is:

T T T
92_91+59_§+§_Z

And the gradient is:

~H=By

A(6:) = B TS

1
) = E(5) = 5(~cos() + cos(~)) = 0

The gradient is zero and we have found the minimum. 6 = 7 minimizes the energy. This
can also be checked by taking the derivation of F(#) and finding the minimum value of the

function.
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Problem 2

Consider the cost function of a Binary Optimisation problem with up to cubic terms:

C(x) = Z a;r; + Z bijxir; + Z CijkTiT T

i 1,j 1,5,k

Each of z; is a binary variable z; € {0,1}, and the index i runs from 1 to n. Finding the
configuration with the smallest cost gives a general cubic, n-binary-variables optimisation
problem. For a number of reasons, one may be interested in turning this problem to a
Quadratic Unconstrained Binary Optimisation (QUBO) problem, i.e. restricting the cost
function to a cost function that has at most quadratic terms (but no cubic terms).

a. Let g(z,y) = (2 — o, —x; — )y = 2y — 2,y — x;y — xy, where y € {0,1} is another,
new, binary variable. Show that the following functions are the same:

f(fﬁ) = —I;T;Tg

= ming(z,y)
Yy

This proves that we can replace cubic terms —x;z ;2 with quadratic ones (2 —x; —z; — xy)y
with the cost of introducing (in this case a single) extra variable y. Note, that we are
interested in the minimum value of the cost function (i.e. we are taking the minimum of this
expression over all binary variables, including the newly introduced v).

Solution: We will prove that for every possible configuration x;z;x) with z; € {0,1} the
two functions above are equivalent. Let x = (z;, z;x), then:

x=1(0,0,0) = f(z)=0and 1n1ng(7c, y) = n%Jm 2y =0

r=(0,0,1) = f(zr)=0and mmg(m,y) mi min(2y —y) = 0

P (010 = f) =0 and ming(e.y) - ; 0(2y — ) = 0
r=1(0,1,1) = f(z) =0 and mmg(q’,y) nin(2y —y —y) =0

= (10,0) = f(a)=0and ming(r.y) = min(2y— ) =0
v=(1,0,1) = f(z)=0and mmg(l’, y) =min(2y —y —y) =
r=(1,1,00) = f(z)=0and mmg(’r y) = mi min(2y —y —y) =0
r=(1,11) = f(z)=-1and min 9(z,y) = mm(2u —y—y—y)=-1

Intuitively, we see that unless x; = x; = x4, = 1 the term (2—z; —x; —x},) is non-negative, thus
it is minimised when we multiply it with y = 0 giving cost 0 in agreement with the product

4
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of —x;x;z (since at least one of the variables is zero). In the case that x; = z; = 25, = 1,
then (2 —2; — x; — x;) is —1 and thus we get minimum when y = 1, leading to total cost of
—1, again in agreement with —z;x;x;, for the same case.

So we can see that we can replace every term —uz;x;z; with quadratic ones min, (2 — x; —

x; — x1)y with the cost of introducing (in this case a single) extra variable y. By doing so,
we can reduce any cubic binary optimisation problem to a quadratic one.

b. Find how we reduce the order of a cost function that has fourth order terms of the form
z;x;opr; and make it quadratics (i.e. an expression with at most quadratic terms).

Solution: We define a new function h(z,y) := (3 —z; — x; — x, — x;)y. It’s easy to see
that:
min h(z,y) = —x;x;251
y

In fact, we can generalise and replace every term with n binary variables —xg...z,_; with

the function: :
h(z,y) = [(n -1) - Zw] y
i=0

that has only up to quadratic terms. Then:

minh(z,y) = —xg... Ty 1
y

c. Consider the cost function:
C(r) = —bx1wowsry + To + 223

Using the result of b. reduce the order to quadratic. Then change the variables to spins
using this x; = 1_25i. Construct a Hamiltonian Hs by replacing each spin variable s; with
the Pauli Z; gate. Finally, calculate the expectation value (1| Hc [¢) of the state |¢) if

|1)) = a]00000) + b|01011) where the last qubit denotes the extra qubit, i.e. |$1525354Y).

Solution: We start by mapping the cost function C(x) to the cost function C(z,y) by
introducing an extra bit y and replacing the term —bx zox324:

Cx) = C(x,y) =53 =21 — T3 — x3 — x4)y + T2 + 213
= C(z,y) = 15y — b1y — bxoy — Bxsy — bryy + w9 + 273



Petros Wallden . IQC 2025-26
Stuart Ferguson Tutorial 6 November 5, 2025

Now, we can change every binary variable z; to a spin variable s; where x; = 1_251', ie.

5) 1 ) )
C(S, Sy) =4 — §Sy + 181 + ZSQ + 153 + 184 — Z(Slsy + S25y + 535y + S4Sy)

Now, we can construct a Hamiltonian Hs by replacing each variable s; with the Pauli Z;

gate. Thus:

) 5 3 1 5 )
HC — 4 - §Zy + ZZl + ZZQ + Z__LZS + ZZ4 - Z(ley + ZQZy + Z3Zy + Z4Zy)

Recall that for a computational basis state |z), Z|z) = (—1)"|z). Initially, we will find the
expectation value of the state [00000):

Fy = (00000] H [00000) = 0

Then, for the second state:
Fy = (01011| H [01011) = 6

So the total expectation value is:

(Y] He [v) = Olal* + 6[b]*




