Problem 1: Complex Numbers

Consider the two complex numbers $v_1 = 1 + i$ and $v_2 = 1 - 2i$ where $i^2 = -1$.

- **a.** Calculate the complex numbers $z_1 = v_1 + v_2$ and $z_2 = v_1 v_2^*$ where z^* denotes the complex conjugate of the complex number z.
- **b.** Let w = 1 i. Calculate wz_1 and $(z_2w)^*$.
- **c.** Calculate the norm of v_1 and v_2 .

Problem 2: Inner-product and orthonormal bases

- **a.** Consider the quantum states $|R\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}, |L\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$,
 - 1. Write $\langle R |$ and $\langle L |$ in vector notation.
 - 2. Prove that both $|R\rangle$ and $|L\rangle$ are normalized, i.e. $\sqrt{\langle R|R\rangle}=\sqrt{\langle L|L\rangle}=1$
 - 3. Are $|R\rangle$ and $|L\rangle$ orthogonal?
 - 4. Show that $|R\rangle$ and $|L\rangle$ satisfy all the conditions of an orthonormal basis of $\mathcal{H}=\mathbb{C}^2$.

Problem 3: Matrices and operators

a.

1. One of the most important linear operators in quantum computing is the *Hadamard* operator defined as:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Find what is the action of the operator on the vector $|v\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$.

2. Consider two of the Pauli matrices:

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Calculate XZ and ZX. Compare the two calculations.

b.

- 1. Show that for finite-size matrices $(A^{\dagger})^{\dagger} = A$ always holds.
- 2. Prove that for two general matrices A and B we have $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- 3. Prove that the Hadamard operator defined above is a self-adjoint operator $(A^{\dagger} = A)$.
- **c.** Compute the eigenvalues and eigenvectors of X and Z.

Problem 4: Euler formula for complex numbers

Euler formula is very handy to use complex numbers in quantum computation. Basically any complex number can be written in terms of its norm and a term $e^{i\theta}$, i.e., $z=|z|e^{i\phi}$. The terms $e^{i\theta}$ is also a complex number of norm 1 and is usually referred in quantum computation, quantum mechanics and other fields as a *phase*.

- **a.** Use the Euler equation, i.e. $e^{i\theta} = \cos \theta + i \sin \theta$, to calculate $e^{i\pi/2}$ and $e^{i\pi}$.
- **b.** Let $z = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}i$. First calculate $|z| = \sqrt{zz^*}$ and then use the Euler equation to obtain ϕ so that $z = |z|e^{i\phi}$.