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Problem 1: Complex Numbers

Consider the two complex numbers v; = 1 4 ¢ and v, = 1 — 2i where i = —1.

a. Calculate the complex numbers z; = vy +vy and 2, = v; — v} where z* denotes the complex
conjugate of the complex number z.

Solution: z; = v1 + vy = (1 4+149)+ (1 —2i) = 2 — 4. In order to calculate 2z, we first
have to conjugate the number vy. Recall that for a complex number w = a + bi, its complex
conjugate is w* = a — bi. It’s easy then to see that v; = 1+ 2¢ and thus z; = —1¢

b. Let w =1 — 4. Calculate wz; and (zow)*.

Solution: For the first multiplication we have:

wn =1—-i)2—i)=2—i—2i—1=1-3

since 2 = —1. For the second expression, we should first do the multiplication and then

calculate the conjugate of the product. So
zw=—i(1l—i)=—i—1=—-1—1

and then if we conjugate:
(zow)" = =141

c. Calculate the norm of v; and v,.

Solution: The norm of complex number w = a + bi is defined as
lw| = Va? + b?

In our case, for v;:

oy | = V12 + 12 = V2
0ol = VT (2P =5

and for vy:
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Problem 2: Inner-product and orthonormal bases

()

—i)

1. Write (R| and (L| in vector notation.

2. Prove that both |R) and |L) are normalized, i.e. \/(R|R) = \/(L|L) =1
3. Are |R) and |L) orthogonal?

a. Consider the quantum states |R) = \% <1>, |L) =

Sl-

4. Show that |R) and |L) satisfy all the conditions of an orthonormal basis of H = C2.

Solution:
Let a vector |¢) in the Dirac “ket” notation. If |¢)) = <Z> then, the conjugate transpose
vector, denoted (] and called a “bra” is defined as (] = (Ji)")* = |)T = (a* b*) Thus,
1
Rl=—(1-i
(R| 7 (1 1)
and ]
Ll=—(1 1
(L] 7 (1 )
We will prove that both |R), |L) are normalised.
1 1 /1 1
RR)y=—(1 —i)— | .| ==(141)=1
(RR) == (10 i) 55 (1) =30+
and so:
V{(R|R) =1
Same for |L):
1 1 1 1
LIL)y=—(1 1) — J==(14+1)=1
£ =5 () (L) =50+
and so:
VILIL) =1
Two vectors |R), |L) are orthogonal if their inner product is 0, i.e. (R|L) = 0. We have,

1 1 1 1
RIL)=—(1 —1)— ])==(1-1)=0
iz =5 (0 =) o5 (L) =501
So |R) and |L) are orthogonal.

Finally, for the last question, in order for |R) and |L) to satisfy all the conditions of an
orthonormal basis, they must satisfy:
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e Be orthogonal, which is true as we proved before.
e Be normalized to one, which we proved to be.

e The number of basis elements must be the same with the dimension of the vector space

which is true as well.

Problem 3: Matrices and operators.

a.

1. One of the most important linear operators in quantum computing is the Hadamard

operator defined as:
1 /1 1
n-2 ()

Solution:

We want to calculate H |v). We have:

ro=d5( )& ()10

2. Consider two of the Pauli matrices:

HORN

Calculate XZ and ZX. Compare the two calculations.

Solution: We start by computing X 7. We have:

xz=(00) (6 5)=( %)
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We continue by computing ZX. We have:

1 0 0 1 0 1
ZX = (o —1) (1 o) N (—1 o)
If we observe the two multiplications we see that ZX = —XZ. This is a well-known

property of the Pauli matrices as all of them anticommute. For our case this translates
to{X,Z} =XZ+7ZX =0.

1. Show that for finite-size matrices (AT)T = A always holds.

Solution: Since Agj = Aj; then (AL.)T = (A;)T = (A4};)" = Aj; and thus:

(ANT = A for every operator A

2. Prove that two general matrices A and B we have (AB)! = BTAT.

Solution: The definition of an adjoint operator M is:
(Jo), M |w)) = (M'|v), |w))
We can now write
(lv), ABu)) = (|v) , A(B |u))),

where setting |w) = Blu) and M = A in the definition of adjoint operator above, allows
us to write

(|v) s A(Bu))) = (A" |v), B |u)).

Using again the definition of the adjoint operator, now with B, we obtain
(ATo), Blu)) = (B'A" [v) , [u))

and

(o), ABu)) = (AB)" |v) , |u))
— (AB)' = BTA!
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3. Prove that the Hadamard operator defined above is a self-adjoint operator.

Solution: As we already mentioned, the elements of the adjoint Hadamard operator
HT are related to those of the Hadamard operator H as H;rj = H;. It is clear then that
these two matrices are identical and as such the Hadamard operator is a self-adjoint
operator.

c. Compute the eigenvalues and eigenvectors of X and Z.

Solution: We will work with the matrix X. The eigenvectors |v) of the matrix X are such
that when X acts on the vectors |v) they are only scaled by a factor A (which is called the
eigenvalue of the matrix), i.e. X |v) = A|v)

The eigenvalues A of the matrix X must satisfy:

!
det(X—)\]):O:>‘(1 _Q‘:o

Thus, we found that the eigenvalues of X are £1. In order to find the eigenvectors, we replace

the eigenvalues in the equation X |v) = A |v). Let’s also write the vectors |v) as |v) = (Z)
0 1\ fa\ [a
1.0)\b) \b
. b  [a
al \b

We can then conclude that the eigenvector corresponding to A = 1 eigenvalue is |v) = (Z).

For A = 1 we have:

If we impose the condition that the vector is normalized || |v) || = 1 then we get a = —=. So

S

vz \1

By working in the same manner for the second eigenvalue (A = —1) it is easy to see that

the eigenvector becomes |v) = L (1)

1
the second eigenvector is |u) = \% 1) In the quantum computing literature you will find

that these two vectors are usually denoted as |[+) and |—).

It is trivial to see that for Z the eigenvectors are the states of the computational basis |0)
and |1) with eigenvalues 1 and —1 respectively.
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Problem 4: Euler formula for complex numbers

Euler formula is very handy to use complex numbers in quantum computation. Basically any
complex number can be written in terms of its norm and a term e, i.e., 2 = |z]e”.. The
terms e? is also a complex number of norm 1 and is usually refereed in quantum computation,
quantum mechanics and other fields as a phase.

0

2im /4

a. Use the Euler equation, i.e. € = cos@ + isinf, to calculate e and e

Solution: For the first case, 8 = 7 and thus:
e =cosm+isinm = —1+i0=—1
For the second case, 6 = 27/4 = 7/2
2™/ = cos(m/2) +isin(n/2) =041 =i

b. Let z = \% - \%z First calculate |z| and then use the Euler equation to obtain ¢ so that
z = |z]e®.

Solution: As mentioned in question c. the norm of a complex number w = a+ bi is defined

as:
w| = Va2 + 2

1) ()

So we need to find the angle § so that z = |z|e"® = ¢ (since |z| = 1). Using the Euler
equation:

For z = 1:

1
V2

Sl

1 1
— — —1 =Cos¢+isin¢

V2 V2
(5~ coso) = (g5 +sma)i=0

For a complex number w = a + bi to be equal to zero, it must have both its imaginary and
real part equal to zero. First, for the real part:

1
cosp = —
¢ 7
and for the imaginary part:
, 1
sing = ———
¢ 7
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Thus ¢ = 77/4 and z = oi7m /4




