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Problem 1: Projectors and measurement

a. Consider the four Bell quantum states:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩), |Φ−⟩ = 1√

2
(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

Write the fours matrices of their outer-products PΦ± = |Φ±⟩⟨Φ±| and PΨ± = |Ψ±⟩⟨Ψ±| in
the 2-bit computational basis ({00, 01, 10, 11}).

Solution:

PΦ+ = |Φ+⟩ ⟨Φ+| = 1

2
(|00⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨00|+ |11⟩ ⟨11|) = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



PΦ− = |Φ−⟩ ⟨Φ−| = 1

2
(|00⟩ ⟨00| − |00⟩ ⟨11| − |11⟩ ⟨00|+ |11⟩ ⟨11|) = 1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1



PΨ+ = |Ψ+⟩ ⟨Ψ+| = 1

2
(|01⟩ ⟨01|+ |01⟩ ⟨10|+ |10⟩ ⟨01|+ |10⟩ ⟨10|) = 1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0



PΨ− = |Ψ−⟩ ⟨Ψ−| = 1

2
(|01⟩ ⟨01| − |01⟩ ⟨10| − |10⟩ ⟨01|+ |10⟩ ⟨10|) = 1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0



b. first, show that PΦ± and PΨ± are projectors by verifying the condition P 2
i = Pi. Then,

show that PΦ+ and PΦ− project on orthogonal subspaces, as PΦ+PΦ− = 0. Finally, show also
that PΨ+PΨ− = 0 and give a simple argument for PΨ±PΦ± = 0
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Solution:

P 2
Φ+ =

1

4


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =
1

4


1 + 1 0 0 1 + 1
0 0 0 0
0 0 0 0

1 + 1 0 0 1 + 1

 = PΦ+

P 2
Φ− =

1

4


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 =
1

4


1 + 1 0 0 −1− 1
0 0 0 0
0 0 0 0

−1− 1 0 0 1 + 1

 = PΦ−

P 2
Ψ+ =

1

4


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0



0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 =
1

4


0 0 0 0
0 1 + 1 1 + 1 0
0 1 + 1 1 + 1 0
0 0 0 0

 = PΨ+

P 2
Ψ− =

1

4


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0



0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 =
1

4


0 0 0 0
0 1 + 1 −1− 1 0
0 −1− 1 1 + 1 0
0 0 0 0

 = PΨ−

PΦ+PΦ− =
1

4


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 =
1

4


1− 1 0 0 −1 + 1
0 0 0 0
0 0 0 0

−1 + 1 0 0 1− 1

 = 0

PΨ+PΨ− =
1

4


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0



0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 =
1

4


0 0 0 0
0 1− 1 −1 + 1 0
0 −1 + 1 1− 1 0
0 0 0 0

 = 0

Finally, it is easy to see the PΦ+PΨ+ = 0 as both matrices act on orthogonal subspace,
{|00⟩ , |11⟩} for PΦ+ and {|10⟩ , |01⟩} for PΨ+ . The same hold for any pair of projectors
resulting from choosing one from PΦ± and a second from PΨ± .

c. Check the completeness relation for the measurement on the {Φ±,Ψ±} basis.

Solution: The completeness relation states that
∑

i Pi = I. To check it, consider the sums
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of Φ± and Ψ± projectors:

PΦ+ + PΦ− =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

+
1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



PΨ+ + PΨ− =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

+
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


Therefore, it is easy to see that PΦ+ + PΦ− + PΨ+ + PΨ− = I.

d. Compute P (Φ+) = ||PΦ+ |ψ⟩||2 for an arbitrary two-qubit state |ψ⟩ = ψ00|00⟩+ ψ01|01⟩+
ψ10|10⟩+ ψ11|11⟩.

Solution:

PΦ+ |ψ⟩ = 1

2
(ψ00 + ψ11) |00⟩+

1

2
(ψ00 + ψ11) |11⟩

||PΦ+ |ψ⟩ ||2 = ⟨ψ|P 2
Φ+ |ψ⟩ = ⟨ψ|PΦ+ |ψ⟩

=
1

4
(ψ00 + ψ11) (ψ00 + ψ11)

∗ (⟨00|00⟩+ ⟨00|11⟩+ ⟨11|00⟩+ ⟨11|11⟩)

=
1

2
|ψ00 + ψ11|2

Problem 2: Grover’s Algorithm

Consider a search space of dimensionN = 4 with its elements encoded in binary {00, 01, 10, 11}.
Suppose you are searching for the element z = 11.

a. Construct the circuit implementing the quantum oracle Of : |x⟩|y⟩ → |x⟩|y ⊕ f(x)⟩ for
the function:

f(x) =

{
1 for x = z

0 otherwise

Solution: In order to construct the circuit that implements the quantum oracle, we need
to see how it acts in the computational basis. We see that the register consists of two qubits.
The classical function returns one only if x1x2 =‘11’. If we look carefully on the action of
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the oracle, we can see that the target qubit is flipped only if both the register qubits are in
the |1⟩ state. This is exactly the action of the controlled-controlled-NOT operator. Thus,
the quantum circuit implementing the oracle is:

b. We can now construct the quantum circuit which performs the initial Hadamard trans-
formations and a single Grover iteration G:

|0⟩ H

Of

H X X H
|ψ⟩

|0⟩ H H X X H

|1⟩ H H |1⟩

1. Compute the output state.

2. What happens after we measure the output in the computational basis?

3. How many times do we have to repeat G to obtain z in this example?

4. In the lecture, we saw the scaling of Grover algorithm is T ≈ π
4
2n/2, which could have

led us to think that we would need 2 Grover steps to find the solution. What would be
wrong with our reasoning?

Solution:

1. First of all, we have to divide the quantum circuit into steps and calculate the state of
the composite system in every subsequent stage.

|0⟩ H

Of

H X X H
|ψ⟩

|0⟩ H H X X H

|1⟩ H H |1⟩

1 2 3 4 5 6 7
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The three-qubit state at step 1 is:

|ψ⟩1 = H⊗3 |001⟩ = |+⟩ |+⟩ |−⟩ = 1

2
(|00⟩ |−⟩+ |01⟩ |−⟩+ |10⟩ |−⟩+ |11⟩ |−⟩)

We choose to write it in this form in order to use the fact that the action of the oracle
on the state |x⟩ |−⟩, where |x⟩ is a computational basis state is:

Of |x⟩ |−⟩ = (−1)f(x) |x⟩ |−⟩

By using the above property, the action of the oracle at step 2 is:

|ψ⟩2 =
1

2
(|00⟩ |−⟩+ |01⟩ |−⟩+ |10⟩ |−⟩ − |11⟩ |−⟩)

=
1

2
(|0⟩ |+⟩+ |1⟩ |−⟩) |−⟩

At step 3, we act with the Hadamard operator on the register qubits, i.e:

|ψ⟩3 = (H ⊗H ⊗ I) |ψ⟩2 =
1

2
(|+⟩ |0⟩+ |−⟩ |1⟩) |−⟩ ,

where the action of the gates left the state invariant. At step 4, we apply NOT gates
on the address qubits, which using X |+⟩ = |+⟩ and X |−⟩ = − |−⟩ leads to:

|ψ⟩4 =
1

2
(|+⟩ |1⟩ − |−⟩ |0⟩) |−⟩ ,

which can be written as:

|ψ⟩4 =
1

2
(|01⟩+ |11⟩ − |00⟩+ |10⟩) |−⟩

Then we act with the controlled-controlled-NOT operator on |ψ⟩4 and the state be-
comes:

|ψ⟩5 =
1

2
(|01⟩ − |11⟩ − |00⟩+ |10⟩) |−⟩

On step 6, we flip again the first two qubits:

|ψ⟩6 =
1

2
(|10⟩ − |00⟩ − |11⟩+ |01⟩) |−⟩ = −1

2
(|0⟩ − |1⟩)(|0⟩ − |1⟩) |−⟩ = − |−⟩ |−⟩ |−⟩ .

Thus, the final action of the Hadamard operator is trivial. Since the global phase has
no physical consequence, we can neglect it and see that all qubits at the end of the
circuit will be in the |1⟩ state and thus the output state will be:

|ψ⟩f = |11⟩ |1⟩
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2. If we measure the output in the computation basis we always obtain the output 11, the
output 11 has probability one.

3. We can see that in this example we have to repeat G only once.

4. The relation T ≈ π
4
2n/2, which is almost 2 for n = 2, was using two approximation,

firstly T >> 1, θ0 << 1 such that θ0 = sin θ0, that are not necessarily true in our
example with so restricted number of qubits. On the other hand, if we revisit the
relation (2T + 1)θ0 = π/2 and using the fact that for n = 2 we have sin θ0 = 1/2 and
therefore θ0 = π/6 we obtain T = 1 as we have observed before.

Remark that for large n we will rarely achieve exactly π/2 (full rotation) after the T
Grover iterations, but rather π/2−δ. This will lead to an error on guessing the solution
with small probability δ (assuming δ << 1 as expected if N >> 1), which can be made
further small by repeating the algorithm few times.

Problem 3: Simon’s Algorithm

Suppose we run Simon’s algorithm on the following function f(x) : {0, 1}3 → {0, 1}3.

f(000) = f(111) = 000

f(001) = f(110) = 001

f(010) = f(101) = 010

f(011) = f(100) = 011

Where f(x) is 2 − to − 1 and f(xi) = f(xi ⊕ 111) for all i ∈ {0, 1}3; therefore the period is
a = 111.

a. What is the initial input of Simon’s algorithm?

Solution: The input of Simon’s algorithm is:

1. A function of the form (as described above) f(x) : {0, 1}3 → {0, 1}3, with the
function promised to obey the property: there exists a string a ∈ {0, 1}3 such that
[f(x) = f(y)] ⇐⇒ [x⊕ y ∈ {03, a}] for all x, y ∈ {0, 1}3.

2. Access to this function restricted to queries of a quantum oracle.

3. The function is also determined by its domain, and the initial input state of Simon’s
algorithm is: |0n⟩ ⊗ |0n⟩ = |0⟩⊗n ⊗ |0⟩⊗n. So in this case, we would have for n = 3:
|ψinitial⟩ = |03⟩ ⊗ |03⟩ = |000⟩ ⊗ |000⟩ = |000000⟩.
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b. What will the state be after:

1. the first layer of Hadamard gates applied to the upper three qubits.

2. the phase kickback unitary generated by the oracle query.

Solution:

i) After the first Hadamard transform on the first three qubits |ψ⟩′ = (H⊗3 |03⟩)⊗ |03⟩,
we have:
|ψ⟩′ = (

∑
x∈{0,1}3

1√
23
|x⟩)⊗ |03⟩ = 1√

23

∑
x∈{0,1}3

(|x⟩ ⊗ |03⟩)

ii) After the Oracle query, we have:
|ψ⟩′′ = 1√

23

∑
x∈{0,1}3

|x⟩ |f(x)⟩

= 1√
23
(|000⟩ |f(000)⟩+ |001⟩ |f(001)⟩+ |010⟩ |f(010)⟩+ |011⟩ |f(011)⟩+ |100⟩ |f(100)⟩+

|101⟩ |f(101)⟩+ |110⟩ |f(110)⟩+ |111⟩ |f(111)⟩)
= 1√

23
((|000⟩ + |111⟩) |000⟩ + (|001⟩ + |110⟩) |001⟩ + (|010⟩ + |101⟩) |010⟩ + (|011⟩ +

|100⟩) |011⟩)
= 1

2
( 1√

2
(|000⟩+|111⟩) |000⟩+ 1√

2
(|001⟩+|110⟩) |001⟩+ 1√

2
(|010⟩+|101⟩) |010⟩+ 1√

2
(|011⟩+

|100⟩) |011⟩).

c. What would the state be after measuring the second register, supposing that the mea-
surement gave |001⟩?

Solution: To answer this question, we need to apply the projector I ⊗ |001⟩ ⟨001| to |ψ′′⟩.
Because |x⟩ ⟨x| |y⟩ ̸= 0 if and only if x = y, we obtain

I ⊗ P001 |ψ′′⟩ = I ⊗ |001⟩ ⟨001| |ψ′′⟩ = 1

2
· 1√

2
(|001⟩+ |110⟩) |001⟩ (1)

The factor of 1
2
would then disappear after renormalisation.

We can see that the only term that will remain if we measure the second register and get
the state |001⟩ with probability 1/4, as it correspond to the square of the norm of the
result of the projection, while the upper-register after the outcome measurement reads |ψ⟩ =
1√
2
(|001⟩+ |110⟩) = 1√

2
(|001⟩+ |001⊕ a⟩).
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d. Imagine we now apply the final step, three Hadamard transforms. Using the formula
H⊗n |x⟩ = 1√

2
n

∑
z∈{0,1}n

(−1)x·z |z⟩, write the state after applying this step.

Solution: Applying H⊗3 on the state 1√
2
(|001⟩+ |110⟩) gives us

|ψ̃⟩ = 1√
23

1√
2

 ∑
z1,z2,z3∈{0,1}

(−1)z3 |z1z2z3⟩+
∑

z1,z2,z3∈{0,1}

(−1)z1+z2 |z1z2z3⟩

 (2)

which after some re-arrangement reads:

|ψ̃⟩ = 1√
23

1√
2

 ∑
z1,z2,z3∈{0,1}

(−1)z3
(
1 + (−1)z1+z2+z3

)
|z1z2z3⟩

 . (3)

We see an interference where the amplitude of outcomes satisfying the equation y1⊕y2⊕y3 =
a · y = 0 is amplified to 2, while the amplitude of those satisfying y1 ⊕ y2 ⊕ y3 = a · y = 1 are
cancelled to 0, i.e.,

|ψ̃⟩ = 1

2

 ∑
z1,z2,z3∈{0,1}:a·z=0

(−1)z3 |z1z2z3⟩

 . (4)

Remark that the normalization is correct as there are 4 potential equiprobable outcomes
satisfying y1⊕y2⊕y3 = 0. We see that the probability of events satisfying y1⊕y2⊕y3 = a·y = 0
is amplified, while those satisfying y1⊕ y2⊕ y3 = a · y = 1 do not occur at all, where the sum
runs over the 4 existing combinations of z1z2z3 that satisfy the condition a · z = 0.

e. If the first run of the algorithm gives y = 011 and the second run gives y = 101. Show
that, assuming a ̸= 000, these two runs of the algorithm already determine that a = 111.

Solution: As discussed in the lecture, it must hold for the period a that a · 011 = 0
and that a · 101 = 0. For a ∈ {000, 100, 011, 111} the first equation is fulfilled and for
a ∈ {000, 010, 101, 111} the second equation is fulfilled. This means that for a ∈ {000, 111}
both equations are fulfilled and since it is assumed that a ̸= 000 it follows that a = 111. An
alternative explanation could be that a · 011 = 0 implies a2 ⊕ a3 = 0 and a · 101 = 0 implies
a1 ⊕ a3 = 0. This is equivalent to a2 = a3 and a1 = a3, which implies that a1 = a2 = a3,
leading to a = 111 as the only non-zero solution.

8


