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Problem 1: Projectors and measurement

a. Consider the four Bell quantum states:

L oL _
|@7) = 2(|OO>+’11>),|@ ) = \/5(’0(» 111))
1 B 1
o) = ﬁ(|01> +[10)),|¥7) = EUOU — [10))

Write the fours matrices of their outer-products Pp+ = |®%)(®F| and Py+ = |¥*)(UF| in
the 2-bit computational basis ({00,01, 10, 11}).

Solution:
1 001
n " 1 000
Pas = @) (@] = 2 (00) (00] + [00) (11] + [11) {00] + 11y iy = 5 0§ 0 ¢
1 001
1 00 —1
_ _ 1 110 00 O
Py = [@7) (@] = 2 (100) 00] — 00) (11| — 12) {o0] + 11y iy = o | 0 0 0 0
-1 0 0 1
00 00
n n 1 110 1 1 0
Py+ = |[¥ ) (U ]:§(|01> (01| 4 ]01) (10| + |10) (01| + |10) <10\):§ 0110
00 00
0 0 0 O
_ _ 1 110 1 -1 0
Py- = [07) (¥ |—§(|01> (01] —|01) (10[ — [10) (01| + |10) (10|)—§ 0 -1 1 0
0 0 0 O

b. first, show that Py+ and Py+ are projectors by verifying the condition P? = P,. Then,
show that P+ and Pg- project on orthogonal subspaces, as Pp+ Pp- = 0. Finally, show also
that Py+ Py- = 0 and give a simple argument for Py+ Pp+ = 0
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Solution:
1001\ /1001 141 0 0 1+1
p _Lf00O0Off0OO0OO0OO0O]_1f 0 00 0 »
**~4loo0oo0o0]looo0oo|l 42| o oo o | "%
1001/ \1001 141 0 0 1+1
1 00 —1 1 00 —1 141 0 0 —1—1
P2_1 0 00 0 000 0] 1 0 0 0 0 _p
7410 00 0 0 00 0] 14 0 0 0 0 R
100 1 100 1 —1-1 00 1+1
0000\ /0000 0 0 0 0
P2_10110 01 10| 1f{01+1 1+10 .
=210 1 10flo110] 2|0 141 141 0| Y
0000/ \0oOOO 0 0 0 0
00 0 0O\ /0 0 0 0 0 0 0 0
pe L[0T —1 0|0 1 ~10]_1]0 1+1 —1-10]|_,
v~ 410 =1 1 o)Jflo -1 1 ol 4|0 -1—-1 141 of "V
oo 0 0o/\o o 0 o0 0 0 0 0
1001 1 00 —1 1-1 00 —1+1
1{o 000 0 00 O 1 0O 00 0
PocFa- =210 0 0 0 0 00 0] 1 0 00 0 =0
1001/ \-100 1 141 00 1—1
0000 /0 0 0 0 0 0 0 0
~1{o11of]0 1 —10] 1]0 1-1 —1+1 0|
P‘“P“"_Z o110 o -1 1 ol 2lo —141 1-1 o]~
0000/ \0o 0O 0 0 0 0 0 0
Finally, it is easy to see the Pg+Py+ = 0 as both matrices act on orthogonal subspace,

{]|00) ,|11)} for Ps+ and {|10),|01)} for Py+. The same hold for any pair of projectors
resulting from choosing one from Pp+ and a second from Pyx+.

c. Check the completeness relation for the measurement on the {®*, U*} basis.

Solution: The completeness relation states that ) . P; = I. To check it, consider the sums
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of ®* and ¥+ projectors:

1001 1 00 —1 1000
P++P7:10000+7oooo:0000
@ 910000 0 00 0 0000
1001 100 1 0001
000 0 0 0 0 0 000 0
powp Lo of 1fo 1 —1 0| _fo 100
v VT olo1 100 210 -1 1 0 0010
000 0 00 0 0 000 0

Therefore, it is easy to see that Pe+ + Pe— + Py+ + Py- = 1.

d. Compute P(®") = ||Py+|10)||? for an arbitrary two-qubit state 1)) = 19|00) + 10 |01) +
10]10) + 11]11).

Solution:

—_

Po+ 1) = = (too + 1011) |00) + ; (Yoo + ¥11) [11)
|Po+ 1) [P = (] Pgs ) = (@] Por [¥)

= — (Yoo + ¥11) (Yoo + ¢11)" ({00]00) 4 (00[11) + (11]00) + (11|11))

1
= 5‘%0 + ¢11\2

[\]

=~ =

Problem 2: Grover’s Algorithm

Consider a search space of dimension N = 4 with its elements encoded in binary {00, 01, 10, 11}.
Suppose you are searching for the element z = 11.

a. Construct the circuit implementing the quantum oracle Oy : |x)]y) — |x)|y & f(x)) for

the function:
1 forx=z
flz) = .
0 otherwise
Solution: In order to construct the circuit that implements the quantum oracle, we need
to see how it acts in the computational basis. We see that the register consists of two qubits.
The classical function returns one only if z;29 ='11". If we look carefully on the action of



Raul Garcia-Patron . IQC 2024-25
Stuart Ferguson Tutorial 4 October 24, 2025

the oracle, we can see that the target qubit is flipped only if both the register qubits are in
the |1) state. This is exactly the action of the controlled-controlled-NOT operator. Thus,
the quantum circuit implementing the oracle is:

———

———

_GB_

b. We can now construct the quantum circuit which performs the initial Hadamard trans-
formations and a single Grover iteration G:

0) —{#H
0) < H}Os
1) —{H > [} 1)

1. Compute the output state.

¥)

[
s

2. What happens after we measure the output in the computational basis?
3. How many times do we have to repeat G to obtain z in this example?

4. In the lecture, we saw the scaling of Grover algorithm is T ~ %2"/ 2 which could have
led us to think that we would need 2 Grover steps to find the solution. What would be
wrong with our reasoning?

Solution:

1. First of all, we have to divide the quantum circuit into steps and calculate the state of
the composite system in every subsequent stage.

o) —{AH-
0) A HH O IR X

)

(-1

7
1)

\J

1 2 3 4 5 6
| | | | | |
| | | | | |
| | | | | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

| |
| |
| M |
| U
| |
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The three-qubit state at step 1 is:
1
[0}y = H*[001) = [4) [+) [=) = 5(100) [=) +[01) |=) +[10) |[=) + [11) [-))

We choose to write it in this form in order to use the fact that the action of the oracle
on the state |z) |—), where |z) is a computational basis state is:

Oy lz) |=) = (=1)/@ |z) |-)
By using the above property, the action of the oracle at step 2 is:
(100) |=) +101) |=) + [10) | =) = [11) [=))

(10} [+) + [ =) [=)

1
W>2 = 9

1
2
At step 3, we act with the Hadamard operator on the register qubits, i.e:
1
[¥)y = (HRH)[$)y =5 () [0) +[=) 1) |-),

where the action of the gates left the state invariant. At step 4, we apply NOT gates
on the address qubits, which using X |+) = |[+) and X |—) = — |—) leads to:

() 1) = =) 10)) =)

1
|1/)>4 - 9

which can be written as:

¥4 = %(IOU + [11) = [00) +[10)) | =)

Then we act with the controlled-controlled-NOT operator on |), and the state be-
comes:

[¥)s = %(\OU — [11) = 00) + [10)) | =)

On step 6, we flip again the first two qubits:
V)6 = %(|10> —[00) = [11) +[01)) [=) = —%(!0> = [))(0) = 1)) =) = =[=) =) =)

Thus, the final action of the Hadamard operator is trivial. Since the global phase has
no physical consequence, we can neglect it and see that all qubits at the end of the
circuit will be in the |1) state and thus the output state will be:

)y =11 1)
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2. If we measure the output in the computation basis we always obtain the output 11, the
output 11 has probability one.

3. We can see that in this example we have to repeat G' only once.

4. The relation T" ~ %2”/ 2 which is almost 2 for n = 2, was using two approximation,
firstly T >> 1, 0y << 1 such that 6, = sinf,, that are not necessarily true in our
example with so restricted number of qubits. On the other hand, if we revisit the
relation (27" + 1)y = 7/2 and using the fact that for n = 2 we have sinf, = 1/2 and
therefore 6y = 7/6 we obtain 7" = 1 as we have observed before.

Remark that for large n we will rarely achieve exactly 7/2 (full rotation) after the T
Grover iterations, but rather /2 —¢§. This will lead to an error on guessing the solution
with small probability § (assuming § << 1 as expected if N >> 1), which can be made
further small by repeating the algorithm few times.

Problem 3: Simon’s Algorithm

Suppose we run Simon’s algorithm on the following function f(z) : {0,1}® — {0,1}3.

£(000) = f(111) = 000
£(001) = f(110) = 001
£(010) = £(101) = 010
£(011) = £(100) = 011

Where f(z) is 2 —to — 1 and f(z;) = f(z; ® 111) for all i € {0, 1}?; therefore the period is
a=111.

a. What is the initial input of Simon’s algorithm?

Solution: The input of Simon’s algorithm is:

1. A function of the form (as described above) f(z) : {0,1}® — {0,1}?, with the
function promised to obey the property: there exists a string a € {0,1}? such that
f(z) = fly)] <= [r@ye{0®a}] forall z,y € {0,1}>.

2. Access to this function restricted to queries of a quantum oracle.

3. The function is also determined by its domain, and the initial input state of Simon’s
algorithm is: |0™) ® [0™) = [0)*" @ |0)®". So in this case, we would have for n = 3:
[Uimitial) = [0%) @ [0%) = |000) @ |000) = |000000).
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b. What will the state be after:

1. the first layer of Hadamard gates applied to the upper three qubits.

2. the phase kickback unitary generated by the oracle query.

Solution:

i) After the first Hadamard transform on the first three qubits |1)" = (H®?|0%)) ® |0?),
we have:

WY =( Y L)oot =t ¥ (z)©]0%)

2€{0,1}3 2e{0,1}3

i) After the Oracle query, we have:
W= X 0lie)

—(/000) | £(000)) +]001) [ £(001)) +]010) | £(010)) +|011) | f(011)) +[100) | f (100)) +
01) [£(101)) + [110) | f(110)) + |111) [ f(111)))

5 ((]000) + [111)) ]000) + (|001) + [110)) [001) + (|010) + [101))]010) + (|011) +
|100)) [011))
= 3(75(1000)+[111)) [000) +5(|001) +[110)) [001) 475 (|010) +101)) [010) + 75 (|011) +
1100)) [011)).

i
|

=

—S-
[N}

c. What would the state be after measuring the second register, supposing that the mea-
surement gave [001)?

Solution: To answer this question, we need to apply the projector I ® |001) (001]| to |¢").
Because |z) (z] |y) # 0 if and only if z = y, we obtain
1 1
I'® Poor [¢") = T ®1001) (001] [¢") = 5 - E(\OOD +[110)) [001) (1)

The factor of % would then disappear after renormalisation.

We can see that the only term that will remain if we measure the second register and get
the state |001) with probability 1/4, as it correspond to the square of the norm of the
result of the projection, while the upper-register after the outcome measurement reads [i) =
5(1001) +[110)) = —5(001) + |001 @ a)).
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d. Imagine we now apply the final step, three Hadamard transforms. Using the formula
H®" |x) = ﬁ > (=1)"%|z), write the state after applying this step.

Solution: Applying H®3 on the state \%(|001> + |110)) gives us

7 1 1 z3 _1)#1t=22 ooz
) = NG Y FD)P lmamy+ Y (1) [z22) (2)

21,22,23€{0,1} z1,22,23€4{0,1}

which after some re-arrangement reads:

Y — Li __1\%3 _ 1\z1t+z2+z3 :
W}> a \/2_3\/§ 21722,2’23;{0,1}( 1) (1 ' ( 1) ) ’21Z2ZS> ‘ (3)

We see an interference where the amplitude of outcomes satisfying the equation y; By, Bys =
a-y = 0 is amplified to 2, while the amplitude of those satisfying y;, G yo Pys =a-y =1 are
cancelled to 0, i.e.,

)= S (1 am) | (1)

21,22,23€{0,1}:a-2=0

Remark that the normalization is correct as there are 4 potential equiprobable outcomes
satisfying 1, ®yoPys = 0. We see that the probability of events satisfying y1 ByaPys = a-y = 0
is amplified, while those satisfying y; @ yo @ y3 = a-y = 1 do not occur at all, where the sum
runs over the 4 existing combinations of z;2523 that satisfy the condition a -z = 0.

e. If the first run of the algorithm gives y = 011 and the second run gives y = 101. Show
that, assuming a # 000, these two runs of the algorithm already determine that a = 111.

Solution:  As discussed in the lecture, it must hold for the period a that a - 011 = 0
and that a - 101 = 0. For a € {000,100,011,111} the first equation is fulfilled and for
a € {000,010,101,111} the second equation is fulfilled. This means that for a € {000,111}
both equations are fulfilled and since it is assumed that a # 000 it follows that a = 111. An
alternative explanation could be that a - 011 = 0 implies as @ a3 = 0 and a - 101 = 0 implies
a1 @ ag = 0. This is equivalent to as = a3 and a; = a3, which implies that a; = as = as,
leading to a = 111 as the only non-zero solution.




