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Problem 1: SWAP Test

Given the two-qubit SWAP gate:

1000
0010
0100
0001

and the two single-qubit states |¢1) = a|0) +b|1) and |p2) = ¢|0) + d |1).
a. Show that Uswap [¢1) ® [¢2) = |d2) @ |1)
b. Consider the following SWAP test circuit acting on the two states |¢1) and |¢9).
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Give the quantum state of the three qubit system at each step of the circuit.

c. Compute the probability P(0) of obtaining the outcome 0 at the top qubit, the probability
P(1) of obtaining the outcome 1, and their bias P(0) — P(1).

Problem 2: Quantum Fourier Transform

As you have seen in the lectures, we can represent any integer z in its binary form as:
Z = 2122 ...2n
where z1, 29, ..., 2, are such so that:

2=22" 4 4212V + 2,

a. How many qubits at least would we need to encode the integer states |14) and |9)? What

is their binary representation when using qubits to encode the integers?
b. Recall that: L p;
& 1+1
OZlZl_i_lzm:E—'—?—l—"—'—F%

Calculate:

1. 23 0.212023, 2% - 0.212023 and 2 - 0.21 2923, where z; € {0,1}.
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2. 22 0qiizds where j; € {0,1}.

c. Now consider the quantum Fourier circuit for three qubits:
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with S and T being the gates:

1 0 10 1 0
S = (0 eiﬂ'/?) - (O 2> 7T_ (0 €i7r/4>

Suppose that we input the state |j) = |71j273). What will be the output state?

Problem 3: Order-Finding

For two positive integers z and N with x < N the order of x modulo N is defined to be the
least positive integer such that:
' =1 mod N

a. Show that for x = 2 and N = 5 we have r = 4.

b. Now consider the transformation U which acts on the computational basis states as
follows:
Ugly) = |ry mod N)

Prove that:
1. U,Uy = U,y

2. Uy = U = Ul, using the fat that z has an inverse 27! ( mod N) if and only if x
and N are co-prime.

3. UUl = UlU, = I, which proves it is an unitary transformation.

4. Ul = I where r is the period of 2 modulo N.

c. Show that the states:
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for integer 0 < s <r — 1 are eigenstates of U,. What is their corresponding eigenvalues?

d. As you can see preparing the state |us) requires that we know r in advance. Fortunately
there is clever observation which circumvents the problems of preparing |us). Show that:

1.
r—1
§ ef2msk/r — rdk,O
s=0

2.

which has as special case when k£ = 0:

T2 lu) =10,

which is a trivial state to generate. This opens the door to applying quantum phase-
estimation to sample from ¢ = s/r, which later leads to a guess of r as explained in the
lecture on Shor’s algorithm.

e. If we wanted to apply a phase estimation procedure we must have efficient procedures to
implement a controlled-U?’ operation for any integer j. Given an integer number z, propose
a technique to compute 22" that scales linearly in k.

f. Assuming that we are given an unitary S such that implements S|z) = |z*> mod N) that
needs O(L?) gates, where L = [log N, i.e., the size of the register. How many gates we will
be needed to implement |z) — |22 mod N)?

Extra problem: Three-Qubit Parity Check

We want to perform an even/odd parity check on qubits 1,2,4. It’s easy to see that the
parity operator P = Z ® Z ® I ® Z is both Hermitian and Unitary, so that it can both be
regarded as an observable and a quantum gate. Suppose we wish to measure the observable
P. That is, we desire to obtain a measurement result indicating one of the two eigenvalues,
and leaving an updated state after the measurement that is projected to its corresponding
eigenspace. We are going to show that the following circuit implements a measurement of P:
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a. Derive the action of the three-qubit parity operator P = Z®Z®I1®Z on the computational
basis state |zxexzzy4). What are the eigenvalues of the operator P?

b. Derive the global state right before the measurement of the upper-qubit when the input
state reads |0) ® [¢), where [¢)) = > 1o 114 72|z) is a four qubit arbitrary input state and «
is a four bit string.

c. Using the rules of partial measurement, show that the measurement of the upper-qubit
projects the state of the lower four qubits to its odd or even parity subspaces, depending on
the outcome being 0 or 1.

d. Prove that the two circuits below are equivalent:
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e. Prove that we can achieve the same result with the circuit:
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