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Practicalities

e Courseteam:
o Chris Heunen
o Malin Altenmuller
o Louis Lemonnier
o  KimWorrall

e Opencourse, Learn, Piazza

e Lectures:
o Tuesday 2-3pm: Lister 4.1
o Thursday 2-3pm: Appleton 2.12
o Nolectures: Thursday week 5
e Tutorials:
o  Wednesday 11am-12 week 3-8: High School Yards G.01
o Wednesday 11am-12 week 9: Lister 3.1
e Labs:
o Weeks7and9




Assessment
e Labs (0%): practical L
e Tutorials (0%): exercise sheets

Success

e Coursework (30%): week 5

e Exam (70%): April-May diet L% u u u a o
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Updates

e “Too much time spent on theory”
o No categories

e “Not enough programming”
o More focus on practicals

e “Not enough practice with graphical reasoning”
o Rebalanced, more introduction on diagrammatics

e “Unclear link between theory and coding”
o Cutting edge developments



Quantum Programming Languages



Levels of abstraction

Application
o .7

Programming Language

e Circuit description languages Assembly Language

Machine Code

e Quantum circuits

e Quantum platforms: superconducting,
optical, trapped ions, neutral atoms Devices (Transistors)




Existing Quantum “Programming” Languages
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Problems of scale

e Hard to reason
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Need for abstraction: circuits
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Need for abstraction: OpenQASM
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Need for abstraction: Q#

operation TestBellState(count : Int, initial : Result) : (Int, Int) {

mutable numOnes = 0;
using ((q@, q1) = (Qubit(), Qubit())) {
for (test in 1..count) {
Set (initial, qO0);
Set (Zero, qi);

H(qo);
CNOT(q@,q1);
let res = M(q0);

// Count the number of ones we saw:
if (res == One) {
set numOnes += 1;
}
}

Set(Zero, q0);
Set(Zero, q1);
}

// Return number of times we saw a |@> and number of times we saw a |1>
return (count-numOnes, numOnes);



Need for abstraction: Qiskit

qgc QuantumCircuit (3, 2)

This will create a quantum circuit equivalent to the following (still valid) circuit declaration:

Registers are created automatically and can be accessed through the circuit as needed.

print (gc.qgregs)
print (gc.cregs)

[QuantumRegister (3, 'q'
[ClassicalRegister(2, '

)]

) ]

Quantum/classical bit index-based addressing

In the spirit of register-less circuits, qubits and classical bits (clbits) can now be addressed directly by index, without a need for
referencing a register. In the following example, be11.h (0) attaches a Hadamard gate to the first quantum bit.

bell QuantumCircuit (2, 2)
bell.h(0)

bell.draw()



Need for abstraction: Quipper

qft’ :: [Qubit] -> Circ [Qubit]
qft’ [] = return []
qft’ [x] = do
hadamard x
return [x]
qft’ (x:xs) = do
xg’ <- qft’ xs
xs’’ <- rotations x xs’ (length xs’)
x’ <- hadamard x
return (x’:xs’’)

where
rotations :: Qubit -> [Qubit] -> Int -> Circ [Qubit]
rotations _ [] _ = return []

rotations ¢ (q:qs) n = do
gqs’ <- rotations c gs n
let m = ((n + 1) - length gs)
q’ <- rGate m q ‘controlled’ c
return (q’:qs’)



Semantics



Meaning

Are these two programs the same?

P=(if 1 = 1 then F else G)
Q= (if 1 = 0 then F else F)

e Different syntax
e Different operationally
e Butdenote same algorithm: [P] = [Q] = [F]



Denotational semantics [-1

programs » mathematical objects

e Operational:

remember implementation details =

e Denotational:
see what program does conceptually

Why?

e Ground programmer’s unspoken intuitions
e Justify/refute/suggest program transformations
e Understand programming through models



Programming and semantics

e Whatif P, Q executables instead of source code? Black box.
But can still analyse information flow.

e Empirical method: know how quantum theory works, but why?
e Cannot copy or delete, how to handle recursion?
e Investigate semantics to design good programming language

e “Semantics = programming language”



Diagrammatic reasoning



All about pictures

e can manipulate like flow chart

e mathematically rigorous backend

e complete for quantum computation
e higher level than quantum circuits

e built up from basic elements: Z and X observables



Workflow
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Graphical rewriting




ZX calculus
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The plan:

To find good syntax and constructs for guantum programming,
Compare and contrast existing languages, and
Investigate semantics first, specifically

Founding graphical programming language



