
Introduction to Quantum 
Programming and Semantics

Chris Heunen University of Edinburgh

Lecture 1: Introduction



Practicalities

● Course team:
○ Chris Heunen
○ Malin Altenmuller
○ Louis Lemonnier
○ Kim Worrall

● Opencourse, Learn, Piazza
● Lectures: 

○ Tuesday 2-3pm: Lister 4.1
○ Thursday 2-3pm: Appleton 2.12
○ No lectures: Thursday week 5

● Tutorials:
○ Wednesday 11am-12 week 3-8: High School Yards G.01
○ Wednesday 11am-12 week 9: Lister 3.1

● Labs:
○ Weeks 7 and 9



Assessment

● Labs (0%): practical

● Tutorials (0%): exercise sheets

● Coursework (30%): week 5

● Exam (70%): April-May diet



Course Material



Updates

● “Too much time spent on theory”
○ No categories

● “Not enough programming”
○ More focus on practicals

● “Not enough practice with graphical reasoning”
○ Rebalanced, more introduction on diagrammatics

● “Unclear link between theory and coding”
○ Cutting edge developments



Quantum Programming Languages



Levels of abstraction

● … ?

● Circuit description languages

● Quantum circuits

● Quantum platforms: superconducting, 
optical, trapped ions, neutral atoms 



Existing Quantum “Programming” Languages

Quipper
Silq

Qiskit

OpenQASM

Cirq

Q#

Tket

Pennylane

Pyquil



Problems of scale

● Hard to reason

● Hard to optimise

● Algorithm discovery

● Control structures



Need for abstraction: circuits

8-bit adder: dimension 21764!



Need for abstraction: OpenQASM



Need for abstraction: Q#



Need for abstraction: Qiskit



Need for abstraction: Quipper



Semantics



Meaning

Are these two programs the same?

● Different syntax
● Different operationally
● But denote same algorithm: 



Denotational semantics

● Operational: (efficiency)

remember implementation details 

● Denotational: (correctness)

see what program does conceptually 

Why?

● Ground programmer’s unspoken intuitions

● Justify/refute/suggest program transformations

● Understand programming through models



Programming and semantics

● What if P, Q executables instead of source code? Black box.

But can still analyse information flow.

● Empirical method: know how quantum theory works, but why?

● Cannot copy or delete, how to handle recursion?

● Investigate semantics to design good programming language

● “Semantics = programming language”



Diagrammatic reasoning



All about pictures

● can manipulate like flow chart

● mathematically rigorous backend

● complete for quantum computation

● higher level than quantum circuits

● built up from basic elements: Z and X observables



Workflow



Rules of engagement

vs



Graphical rewriting



ZX calculus



The plan:

● To find good syntax and constructs for quantum programming,

● Compare and contrast existing languages, and

● Investigate semantics first, specifically

● Founding graphical programming language


