Introduction to Quantum
Programming and Semantics

Lecture 1: Introduction

Chris Heunen % University of Edinburgh

Practicalities

e Courseteam:
o Chris Heunen
o Malin Altenmuller
o Louis Lemonnier
o KimWorrall

e Opencourse, Learn, Piazza

e Lectures:
o Tuesday 2-3pm: Lister 4.1
o Thursday 2-3pm: Appleton 2.12
o Nolectures: Thursday week 5
e Tutorials:
o Wednesday 11am-12 week 3-8: High School Yards G.01
o Wednesday 11am-12 week 9: Lister 3.1
e Labs:
o Weeks7and9

Assessment
e Labs (0%): practical L
e Tutorials (0%): exercise sheets

Success

e Coursework (30%): week 5

e Exam (70%): April-May diet L% u u u a o
Effort

ourse Material

PICTURING
QUANTUM
SOFTWARE

An Introduction to
ZX Calculus and Quantum Compilation

ALEKS KISSINGER AND
JOHN VAN DE WETERING

Introduction to Quantum Programming and Semantics

Chris Heunen

Spring 2(

1 Introduction

veral existing
n better ways

nd contrast
1 the longer te

u tell a quantum computer what you want it to do? We'll compare

How should y
shortly

languages intended to do this quantum programming. But, as we'll s
need to be developed. There is no end-all-be-all answer or even consensus yet, but we'll build towards at least
a medium-term answer. Mostly, we'll spend time on thinking about what features should be available in a
good way to instruct a quantum computer. To come up with good quantum programming primitives, we'll
investigate semantics, that is, the abstract mathematical frameworks known to model quantum computing.

L

1.1 Quantum Pra

There are several physical platforms quantum computers are imp on, including sup
atral atoms, and anyons. At the level of ‘bare metal’, instruct
oot this laser at that angle for so and so long

A quantum
We will not

trapped ions, photons,

computer thus means telling it things like
concern ourselves with such hardware instruction sets, and leave it to vendors to provide compilers into their

d restrictions.

platform’s specific controls &
At a slightly higher level of abstraction, the prevalent way to describe a quantum computation is as a

quantum circuit. Just like an electrical circuit or a boolean circuit, it consists of gates applied to wires that
independent of the actual hardware implementing these gates, but working at this

1. This
1 has three major drawbacks.
Here are three quantum circuits on

carry informati

still quite low ley
and 125 qubits,

First, gate level des

does not scale

respectively

T
m
7}
=7

t quickly
for matrices of complex numbers, which
ithms for a small number of qubits is already

Can you imagine specifying that by haud?
'y hard to see the forest for the trees. The same

becomes v
the quantum cireuits represent. Coming up
hard enough. To discover new ones, thinking at a higher level of abstraction scems desirable.

on quantum cireuit. description does not help the

Second, naively bolting classical control structur

Yes. turning a pen-and-paper algorithm into a quantum circuit at any scale requires

underlying problem

| MATHEMATICS |

Categories for
Quantum Theory:
An Introduction

Updates

e “Too much time spent on theory”
o No categories

e “Not enough programming”
o More focus on practicals

e “Not enough practice with graphical reasoning”
o Rebalanced, more introduction on diagrammatics

e “Unclear link between theory and coding”
o Cutting edge developments

Quantum Programming Languages

Levels of abstraction

Application
o .7

Programming Language

e Circuit description languages Assembly Language

Machine Code

e Quantum circuits

e Quantum platforms: superconducting,
optical, trapped ions, neutral atoms Devices (Transistors)

Existing Quantum “Programming” Languages

= /Z OpenQASM @g Q#

COMMUNICATIONS
T NICATION:
=Y .
L)
% u I p pe r
=\

Problems of scale

e Hard to reason

Ry @) m¥nyn} : =0
e Hard to optimise e s
]| - =g
¢ | e
| I =i | =y
e Algorithm discovery (] S
1
L=

e Control structures

Need for abstraction: circuits

8-bit adder: dimension

llllllllllll

21764!

Need for abstraction: OpenQASM

ority a,b,c

Need for abstraction: Q#

operation TestBellState(count : Int, initial : Result) : (Int, Int) {

mutable numOnes = 0;
using ((q@, q1) = (Qubit(), Qubit())) {
for (test in 1..count) {
Set (initial, qO0);
Set (Zero, qi);

H(qo);
CNOT(q@,q1);
let res = M(q0);

// Count the number of ones we saw:
if (res == One) {
set numOnes += 1;
}
}

Set(Zero, q0);
Set(Zero, q1);
}

// Return number of times we saw a |@> and number of times we saw a |1>
return (count-numOnes, numOnes);

Need for abstraction: Qiskit

qgc QuantumCircuit (3, 2)

This will create a quantum circuit equivalent to the following (still valid) circuit declaration:

Registers are created automatically and can be accessed through the circuit as needed.

print (gc.qgregs)
print (gc.cregs)

[QuantumRegister (3, 'q'
[ClassicalRegister(2, '

)]

)]

Quantum/classical bit index-based addressing

In the spirit of register-less circuits, qubits and classical bits (clbits) can now be addressed directly by index, without a need for
referencing a register. In the following example, be11.h (0) attaches a Hadamard gate to the first quantum bit.

bell QuantumCircuit (2, 2)
bell.h(0)

bell.draw()

Need for abstraction: Quipper

qft’ :: [Qubit] -> Circ [Qubit]
qft’ [] = return []
qft’ [x] = do
hadamard x
return [x]
qft’ (x:xs) = do
xg’ <- qft’ xs
xs’’ <- rotations x xs’ (length xs’)
x’ <- hadamard x
return (x’:xs’’)

where
rotations :: Qubit -> [Qubit] -> Int -> Circ [Qubit]
rotations _ [] _ = return []

rotations ¢ (q:qs) n = do
gqs’ <- rotations c gs n
let m = ((n + 1) - length gs)
q’ <- rGate m q ‘controlled’ c
return (q’:qs’)

Semantics

Meaning

Are these two programs the same?

P=(if 1 = 1 then F else G)
Q= (if 1 = 0 then F else F)

e Different syntax
e Different operationally
e Butdenote same algorithm: [P] = [Q] = [F]

Denotational semantics [-1

programs » mathematical objects

e Operational:

remember implementation details =

e Denotational:
see what program does conceptually

Why?

e Ground programmer’s unspoken intuitions
e Justify/refute/suggest program transformations
e Understand programming through models

Programming and semantics

e Whatif P, Q executables instead of source code? Black box.
But can still analyse information flow.

e Empirical method: know how quantum theory works, but why?
e Cannot copy or delete, how to handle recursion?
e Investigate semantics to design good programming language

e “Semantics = programming language”

Diagrammatic reasoning

All about pictures

e can manipulate like flow chart

e mathematically rigorous backend

e complete for quantum computation
e higher level than quantum circuits

e built up from basic elements: Z and X observables

Workflow

CNOT 1 0 =] Ely

H 2 G}

Z3

"o o <HHle{x SR
H 1 <tH 7] 2]

CNOT 4 2 @

@

Rules of engagement

>

&

—HE- =

—HE- = -

- = —EHIHSHSHE-

T% - Site
18 -5

e - E
Eﬂi’ “H

SHot
Ieb- i

Tab -2
Tt

Tafl - wHa
T
Tafk
Tl -
e

aﬁi

ot a]

Tabt

Graphical rewriting

ZX calculus

(—1+z‘

1+
144
1=
2 1+1

1—4
—1+i
\ 1+i

1+12

1412

1412

144 \
—1+41

1—i

141

144
l%

“1+i)

VS,

The plan:

To find good syntax and constructs for guantum programming,
Compare and contrast existing languages, and
Investigate semantics first, specifically

Founding graphical programming language

