Introduction to Quantum Programming and Semantics

Lecture 12: Measurement

Chris Heunen

Overview

- Q#
- Measurement
- Mixed states
- Quantum channels
- Environment structures

Microsoft QDK

- Q# language
- Q# libraries with several standard operations and algorithms
- Dot.net integration with classical languages (Python, C#, F#, etc)
- Orchestration language to execute Q#:
 - Simulators
 - Resource estimators
 - Microsoft Azure quantum hardware

Q#

- Language itself is imperative ...
- ... but can be used in functional way through dot.net
- Not (necessarily) circuit description language: quantum instructions are dispatched in order and you can use measurement results in rest of program

(cf measurement-based quantum computing, quantum error correction)

Measurement

Measurement is only way to get info out of quantum system

a projection is a linear map c^m - c^m s.t.
$$p = p^{t} = p^{2}$$

self-adjoint eidenpotent

$$spliets C^{n} \text{ into two princes} : - im(p) = \frac{1}{2} + \frac{1}{2}$$

Measurement

More generally,
$$P_{1,...,R_{k}}$$
, when $\sum_{j=1}^{k} P_{j}^{j}$ splits into k outhogonal pieces
von Neumann measurement $M = \{P_{1,...,R_{k}}\}$ s.t. $\sum_{j=1}^{k} P_{j}^{j} = 1$
probability of outcome j when measure state $|\psi\rangle$ with M is
 $P_{rob}(j|1|\psi\rangle) = \langle \psi|P_{j}|\psi\rangle = i^{''}Ban rule^{''}$
hote: $if|\psi\rangle = e^{i\theta}|\psi\rangle$ then $\langle \psi|P_{j}|\psi\rangle = \langle e^{i\theta}\psi|P_{j}|e^{i\theta}\psi\rangle$
 $if (A-1)$ orthonormal basis, then $(-DA-) : -DA-DA$
 $= -DA^{-}$
and $P_{rob}(j|1|\psi\rangle) = \langle \psi|P_{j}|\psi\rangle = \langle \psi|P_{j}|\psi\rangle = \langle \psi|P_{j}|\psi\rangle = ||\langle \psi|P_{j}|\psi\rangle|^{1}$

Measurement ly> _____ <<u>↓</u><u>B</u><u>→</u> ~ after measurement. e.g. Z = { 10><01, 1><1} 50 with pushability 11 <014 >112 measure Z with protability 11<14>112 Outcom $\|\langle 0|\psi\rangle\|^{2} + \|\langle 1|\psi\rangle\|^{2}$ = <014><410> + <114><411> 117 =... mk y=x107+B117 ... =1

Mixed states

Mixed states

measure subsystem only: M = { ___} et in 1/10,>11 the the the state if gubits not entangled, $\varphi = \psi, \otimes \psi_2$, the post-means state $1 > \otimes 1 \neq_2$ if gutits are enlayed, post-meas Z 128/4;) mixed state = convex combination of pure states density matrix = matrix positive semidefinite, trace 1 = Z pilizail for som probabilities pi

Quantum channels

Completely positive maps

 $\int = \sum_{i} |iii\rangle$

Environment structures

Thick vs thin wires

pure state picture

mixed state prhu

(J-)

Thick inte carries guest this inte carries 673

Quantum teleportation

Summary:

- Q#: not necessarily circuit description, mid-circuit measurement
- Mixed states: partial knowledge
- Measurement: postselection, sums, graphically