Introduction to Quantum Programming and Semantics

Lecture 13: Clifford circuits

Chris Heunen

Introduction to Quantum Programming and Semantics

Lecture 13: Clifford circuits

Chris Heunen

Overview

- Clifford circuits and Clifford diagrams
- Graph states with local Clifford operations
- Local complementation, pivoting
- Strong simulation of Clifford circuits
- Synthesis of Clifford circuits

Clifford circuits and Clifford diagrams

Clifford circuits

are made per:

- · greantin error correction
- · classical simulation efficient
- · rich rearite theory

Clifford diagrams is a 2× diagram made of "Cifford spiders"

: por di mo i promo di "Hadamand edges" notation:

- every input / support is connected to spicler

Clifford diagrams

Pap: every ZX diagram is equal to a graph-Rile one. 1. use colour change to eleminate X spiclers Proof: 2. use spider fusion to eliminate non-Hedges Da & ~ ? 3. eliminate parallel edges: $\frac{1}{2} \frac{1}{2} \frac{1}$ climinate self-logs:

4. use ____ = ----

Graph states with local Clifford operations

Graph states are graph-like to diagrams with no input

G =

but not $C = \frac{1}{200}$

a graph state & local Clifford's (GS2C) def: is a state of form (U, o...oU,) 19> for some graph & and 1-qubit Clifford gastes U;

Normal form

Def: a Clifford state is of form 147= C10...or for some Clifford circuit C.

Them any Clifford state is equal to a GSLC

Local complementation, pivoting

Pivoting

Consider strong complementautz: <;

add context:

deletes spiders.

deleted adjacent phase free spiders

Simulating Clifford circuits

Simulation of Clifford circuits

given Clifford circuit C, compute $Prob(K_1,...,K_n | 1\psi>)$, where $1\psi> = C/0...o>$ use Born rule $Prob(K_1,...,K_n | 1\psi>) = 1 < K_1,...,K_n | Clo...o>1^2$

this truniates

bides

Simulation of Clifford circuits

prop: algorithm kunitates in polynomial time (in # qubits and # gates of C) $G((n+k)^3)$

remark this is not optimal: doing step 2 optimally takes $G(n^2k)$ skeps if $k \gg n$, this makes a Lig difference

Synthesising Clifford circuits

Synthesis of Clifford circuits

____ GSLC Clifford diagram - AP-form Che internal spiders all interior spiders - have phase 0, Th - are only connected to boundary spiders WL 315,

Any Clifford circuit can be written with at most O(w) gates.

Summary:

- ZX diagrams with phases pi/2 are simulable but interesting
- Correspond to Clifford circuits
- Can bring to surprisingly efficient normal form graphically
- Can simulate efficiently graphically