
Introduction to Quantum 
Programming and Semantics

Chris Heunen University of Edinburgh

Lecture 16: Oracles









Overview

● Quipper

● Oracles



Types of quantum algorithms

main trick : change of basis

-
,
a more generally,

quantum Fourier transfer

"oracular" quantum algorithms⑪

post-process-
· Deutsch-lozsa , Simon's

YE & tochang reduce factening
· Factoring (Star) :change ofbig classical

period-findingof busiscircuitas isb
Ulal a mod n + g.

find n

· Hidden subgroup

i : G-H injection of abelian groups
findG



Types of quantum algorithms
search· Grover

· amplitude amplification

②

Gra quantum walks

~

classical?a
is m

③ Hamiltonian simulation



Types of quantum algorithms
④ Hybrid/quantum machine learning

meas

statistics

- classicalcan-;
optimiser

echais



Quipper



Quipper

● Open source

● Functional (with side effects)

● Domain-specific language in Haskell

● Aim: resource estimation

● Lazy

● Library including 7 nontrivial reference quantum algorithms



Quipper model

Execution phases:

● Compile time

● Circuit generation time 
Inputs whose values are already known now are called parameters
e.g. Deutsch-Jozsa is really a family of circuits, one for each n

● Circuit execution time
Inputs whose values are only known now are called inputs
e.g. the n input qubits to Deutsch-Jozsa



Quipper model

Types:

● Bits 
○ have type Bool at circuit generation time
○ have type Bit as classical Boolean input to a circuit

● Qubits
○ Have type Qubit, only available as inputs at circuit execution time

● Bools can be converted into Bit, but not the other way around

● Measurements only at circuit execution time, so outcome is Bit, not Bool



Control

*



Measurement



Quipper semantics
107
-15

·



Advanced Quipper

● Quantum data types:
○ E.g. (Qubit,[Qubit]), (Bit,[Bit]), (Bool,[Bool])

● Generic functions:
○ Following does not just apply to Bool, but also e.g. (Bool,[Bool])

● Recursion:
○ Circuit-producing functions can be recursive over any parameters known 

at circuit generation time. 
○ Can e.g. recurse over list of qubits to write QFT



Advanced Quipper

● Circuit operations:
○ Functions that take a circuit and make new circuits based on it
○ E.g. repeat circuit number of times, reverse circuit, use as subcircuit
○ Any classical reversible function can turn into a circuit automatically:

● Semantics: well-founded semantics, but not yet
○ Dependent types: recognise that Bits are only used at circuit execution 
○ Linear types: prevent terms involving Qubits from being copied

Proto-Quipper



Toy example



Deutsch-Josza



● Quipper is functional, lazy, embedded

● Three phases of execution

● Higher-order so works particularly well with oracles

Summary:


