
Introduction to Quantum
Programming and Semantics

Chris Heunen University of Edinburgh

Lecture 3: Composition and tensor product

Overview

● OpenQASM

● Tensor product

● Deutsch-Jozsa: running example

OpenQASM

OpenQASM

● IBM, but de facto standard

Braket, Quipper, Tket, many others

● Meant as intermediate representation

source/target for machines, not humans

● Circuit description

meant to be executed on classical computer

Features

● Abstraction:
○ Precise location of qubit doesn’t matter (“routing”)

○ Descriptive names for variables

○ Compile-time constants

● Typing
○ qubit, bit, int, angle

○ registers, e.g. qubit[4], int[16]

● Structure
○ conditionals

○ loops

○ subroutines

Types and gates

● Variables are declared and initialised

bit b;
qubit q;
reset q;

● Single built-in quantum gate U

Subroutines

gate X a {
U (pi , 0 , pi) a;

}

gate H a {
U (pi/2 , 0 , pi) a;

}

Composition

● Statements separated by semicolons

● Whitespace ignored

● Semantic structure: composition
○ sequential composition of quantum circuits

○ multiplication of unitary matrices

○ sequential composition of string diagrams

Tensor product

Registers of multiple qubits

● Size fixed at declaration

● Interpreted as tensor product

u
single qubit : 14) e I

N qubitsi=
↳)

= f : ee
o qubits ((= c = c + (0)

(e-g:-

fog :
D'oe"-c'oc

(ag"8) = abh
"Kroneckerpara

(v
,
w) > vow

V = w > Vow = Sivion: (viev, view, ze

7 ! linear

bilinear D ~
E

Ever : f(r, -1 :W-X
is linear

FweW : fl-,w : V -+ X is linear

"Tensor products make bilinear maps
linear"

Tensor product interacts with composition

● Interchange law

I . - 1 -10I-19 . - I

=# I

= I l

Sequential composition is

associative holgof) = Chogy of

not commutative got + fog

parallel composition is

halgof) = (hag) ofassociative

symmetric

Controlled gates

● Modifier

ctrl @ U (a, b, c) q_reg [0], q_reg [1];

● Interpreted semantically as matrix

= O(
I O 00 IG
!

E

O 0 --

1007 10is 110)
11i7

Example

gate H a {
U (pi/2, 0, pi) a;

}

gate CX a, b {
ctrl @ U (pi, 0, pi) a, b;

}

qubit [2] = q_reg;
reset q_reg;
H q_reg [0];
CX q_reg [0], q_reg [1];

Example

gate H a {
U (pi/2, 0, pi) a;

}

gate CX a, b {
ctrl @ U (pi, 0, pi) a, b;

}

qubit [2] = q_reg;
reset q_reg;
H q_reg [0];
CX q_reg [0], q_reg [1];

Deutsch-Jozsa

All-or-nothing oracular promise problems

● Decide on a solution without relying on approximation

● Input is provided as oracle

● Relies on promise about ‘global behaviour’ of input

● Quantum algorithm faster than best-known classical algorithm

● E.g. Shor, Grover, hidden subgroup

Setting

● Input: 2-colouring f:{0,1}n->{0,1} of bitstrings

● Promise: f is either
○ Constant: any input gets same colour

○ Balanced: 0 on half the inputs, 1 on the other half

● Task: find out which is the case

Oracles

● Can ask f for its value on some bitstring

● Bennett’s trick turns f into unitary gate

Deutsch-Jozsa circuit

!!!

Example oracle

gate Oracle x y z {
CX x z;
CX y z;

}

Implementation
// declare three qubits
qreg x;
qreg y;
qreg z;
// set the three qubits to |0>, |0>, and |1>
reset x;
reset y;
reset z;
X z;
// apply Hadamard to all three qubits
H x;
H y;
H z;
// apply the oracle
Oracle x y z;
// apply Hadamard to the first two qubits
H x;
H y;
// measure the first two qubits (will discuss later)
bit a = measure x;
bit b = measure y;

Summary:

● OpenQASM low-level de-facto standard circuit description language

● To interpret it, semantics needs both sequential and parallel composition

● Tensor products of matrices

● Deutsch-Jozsa prototypically solves all-or-nothing oracular promise problem

