Introduction to Quantum Programming and Semantics

Lecture 7: Copying and deleting

Chris Heunen

🔞 University of Edinburgh

Overview

- Copying and deleting
- No-cloning and no-deleting
- Products
- Categories

Copying and deleting

Copying machines

• commutative: $-d = \frac{d}{d}$

- · associative :

$$-d-d \stackrel{(1)}{=} -d-d$$

A d AOA

2 -

• cumital
$$-d = (5) = (-d - 12)$$

Combining comonoids

B

 $A \rightarrow A$ s.t. associative $B \rightarrow = B^{o}$ $\sim A$ (commettatte $a = \chi a$) unital 3 = = = 3

Monoids

Pairs of pants

No-cloning and no-deleting

Uniform deleting

Systematric deleting: for each type A, have A -0 s.t. for any f: A - o = A - F - B - oand: ABB - a = A - a B - a

consequence: unique map A - I

A-le A---[e]

Uniform copying

Copying systematically means: for each type A, choose $A - A = A^A$ for each map $f; A - A^B = A - A^B$ $E - B = A - A^B$ $A = B - A^B$

No-cloning theorem Lem: $c^{A} = (A PF_{I}) \quad c^{C} = [d_{I}] \quad c^{C} = (A PF_{I}) \quad c^{C}$

 $C_{C} = [d_{T}]C_{C} = C[d_{M}]E = C(+)$ $C_{C} = (+)$ $C_{C} = C[d_{M}]E = C(+)$ $C_{C} = C[d_{M}]E = C(+)$ $C_{C} = C[d_{M}]E = C(+)$

 $Pf: \times = S = S = = =$ Len: $X = \Box$

Thus: If uniform copying, $P_f: -\overline{A} = \overline{B} = \overline{B} = \overline{A} = \overline{A}$

Products

Universal property

Characterising products

Composition

Summary:

- Comonoids are copying machines
- No-cloning theorem holds syntactically
- Can recognise when semantics is classical via products
- Can interpret string diagrams generally in monoidal categories