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Overview

● Qiskit

● Frobenius algebras

● Spiders

● Phases



Frobenius algebras



Copying orthonormal bases
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Interacting monoid and comonoid in the example of copying
a basis liste lii)
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Claim : if - copies basis , and satisfies Frobenins,

then basis rectors are uthogmal.
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Classical structure is :

a map - : A tot that :

- is associative

- is unital

- is commutative

-
is special

- satisfies Frobenins lar



Self-duality
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don't need decorating arrows ; bits instead of qubits.



Spiders
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Spiders therem : any connected diagram built up from -,
0
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So : instead of copying map, can have spice

i. e. a family/In of maps st.
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Phases



Phases are states st. =--
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Phased spider theorem
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So : instead of copying map, can have spice

i. e. a family/In of maps st.
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Phase group

if are phases,
then so
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● Qiskit is fairly low-level circuit description language

● Frobenius law is extreme form of ‘only connectivity matters’

● Can equivalently think of classical data as spiders

● Spiders can carry phases around

Summary:


