Introduction to Quantum Programming and Semantics 2025 Tutorial week 4

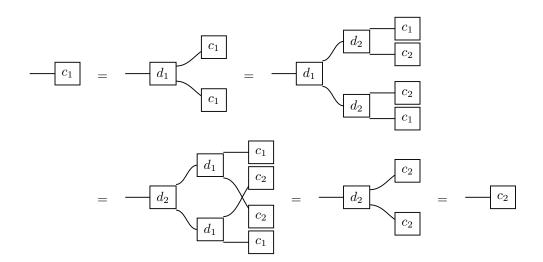
Exercise 1

- (a) The copy map $d\colon I\to I\otimes I$ is the empty picture with (once) zero wires in and (twice) zero wires out. Similarly, the identity map $I\to I$ is the empty picture with (once) zero wires in and (once) zero wires out. Hence the associativity condition holds vacuously: the left-hand side is a composition of empty pictures, as is the right-hand side. Commutativity similarly holds vacuously, because the swap map $I\otimes I\to I\otimes I$ is also the empty picture with (twice) zero wires in and (twice) zero wires out. Finally, as discarding map $e\colon I\to I$ we can also take the empty picture, making the unitality condition true in the same way.
- (b) Specialising the definition in the question, a homomorphism $a: I \to A$ is a map satisfying:

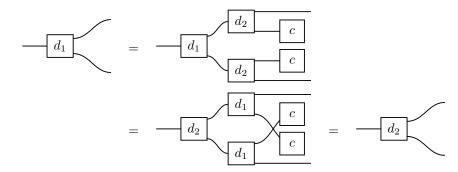
But that is exactly $f \circ a = a \otimes a$.

Exercise 2

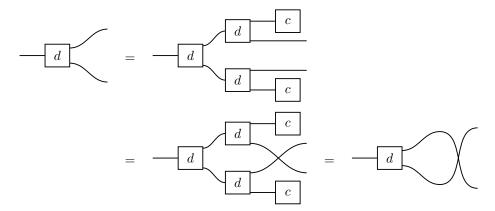
(a)



(b) Writing c for $c_1 = c_2$:



(c) Writing d for $d_1 = d_2$:

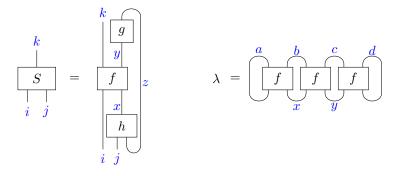


Exercise 3

$$\Phi = \operatorname{Tr}((f \otimes g) \circ (\operatorname{SWAP} \otimes \operatorname{id}) \circ (\operatorname{id} \otimes g))$$

Exercise 4

Labelling the wires with some index names:



...we get:

$$S_{ij}^k = \sum_{xyz} f_{ix}^{ky} g_y^z h_{jz}^x$$

$$\lambda = \sum_{abcdxy} f_{ax}^{ab} f_{xy}^{bc} f_{yd}^{cd}$$

Note λ is a scalar, so all indices on the RHS are summed over.