

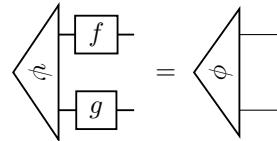
Introduction to Quantum Programming and Semantics 2026

Coursework

This coursework will count for 30% of your overall grade. Upload your answers to Gradescope by 12 noon on Monday 23th February. Each exercise is weighed equally.

Exercise 1

We say that two joint states ψ and ϕ of $A \otimes B$ are *locally equivalent*, written $\psi \sim \phi$, if there exist invertible maps $A \xrightarrow{f} A$ and $B \xrightarrow{g} B$ such that



(a) Show that \sim is an equivalence relation.

In **Hilb**, we can write a state $\mathbb{C} \xrightarrow{\phi} \mathbb{C}^2 \otimes \mathbb{C}^2$ as a column vector

$$\phi = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix},$$

or as a matrix

$$M_\phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

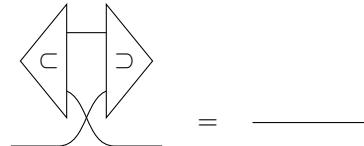
(b) Show that ϕ is an entangled state if and only if M_ϕ is invertible. (Hint: a matrix is invertible if and only if it has nonzero determinant.)

(c) Show that $M_{(\text{id}_{\mathbb{C}^2} \otimes f) \circ \phi} = M_\phi \circ f^T$, where $\mathbb{C}^2 \xrightarrow{f} \mathbb{C}^2$ is any linear map and f^T is the transpose of f in the canonical basis of \mathbb{C}^2 .

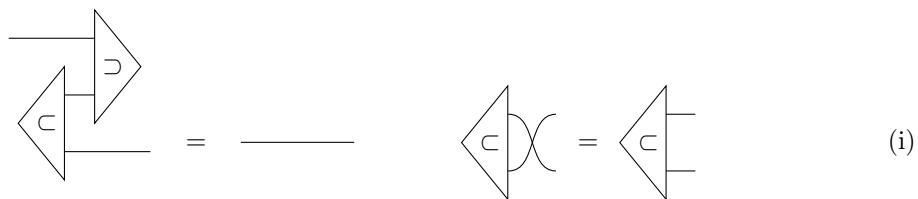
(d) Use this to show that there are three families of locally equivalent joint states of $\mathbb{C}^2 \otimes \mathbb{C}^2$.

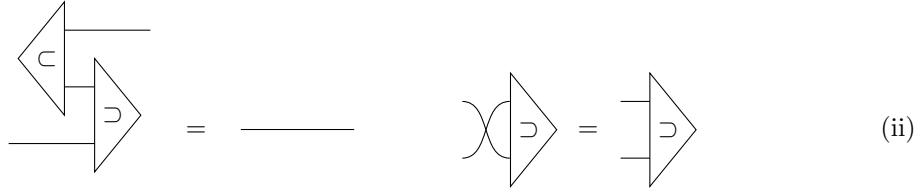
Exercise 2

Prove that



follows from the following 4 equations:





In fact, only 2 equations are needed: prove that either of (i) or (ii) implies the other.

Exercise 3

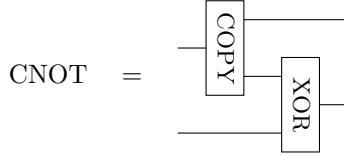
This exercise is about encoding classical functions as linear maps using orthonormal basis states and effects (see [KW 5.3.4]). For a function $F : \{0, 1\}^m \rightarrow \{0, 1\}^n$, we can define an associated linear map f as

$$f = \sum_{(a_1 \dots a_m \mapsto b_1 \dots b_n) \in F} (|a_1\rangle \langle b_1|) \otimes \dots \otimes (|a_n\rangle \langle b_n|)$$

where the notation $(a_1 \dots a_m \mapsto b_1 \dots b_n) \in F$ means we are summing over the *graph of F* , i.e. the set of bitstrings $\{(a_1, \dots, a_m, b_1, \dots, b_n) \mid F(a_1, \dots, a_m) = (b_1, \dots, b_n)\}$. Using this encoding, define:

$$\begin{aligned} \text{XOR} &= |0\rangle \langle 00| + |1\rangle \langle 01| + |1\rangle \langle 10| + |0\rangle \langle 11| \\ \text{CNOT} &= |00\rangle \langle 00| + |01\rangle \langle 01| + |10\rangle \langle 11| + |11\rangle \langle 10| \\ \text{COPY} &= |00\rangle \langle 0| + |11\rangle \langle 1| \end{aligned}$$

Show that



(Hint: try comparing the left-hand side to the right-hand side on all basis states, rather than writing out a big sum.)

Next, find ψ and ϕ such that the following equation holds.

$$|\phi\rangle \langle \psi| = \text{XOR} \circ \text{COPY}$$

Exercise 4

Recall that a set $\{x_0, \dots, x_n\}$ of vectors in a vector space is *linearly independent* if $\sum_{i=0}^n z_i x_i = 0$ for $z_i \in \mathbb{C}$ implies $z_0 = \dots = z_n = 0$. Show that the nonzero copyable states of an associative and unital linear map $\mathbb{C}^n \xrightarrow{d} \mathbb{C}^n \otimes \mathbb{C}^n$ are linearly independent. (Hint: consider a minimal linearly dependent set.)

Exercise 5

Given that a and b are qubits, show that the following three OpenQASM programs are denotationally equivalent.

<code>ctrl @ X a, b;</code>	<code>H b;</code>	<code>H b;</code>
	<code>ctrl @ Z a, b;</code>	<code>ctrl @ Z b, a;</code>
	<code>H b;</code>	<code>H b;</code>