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Practicalities

® Course team:
O Chris Heunen
O Kim Worrall

® Opencourse, Learn, Piazza

® Lectures:
O Tuesday 2-3pm: Medical School G.14
O Thursday 2-3pm: High School Yards G.01
(Week 4: Lister G.01, Week 10: Lister G.13)

® Tutorials:
O Wednesday 11am-12 weeks 3-9: High School Yards G.01

® Labs:
O Wednesday 2-3pm week 7: Appleton 5.05




Assessment
® Labs (0%): practical
® Tutorials (0%): exercise sheets
® Coursework (30%): week 5

® Exam (70%): April-May diet

Success

|-

Effort



Course Material

PICTURING
QUANTUM
SOFTWARE

An Introduction to
ZX Calculus and Quantum Compilation

ALEKS KISSINGER AND
JOHN VAN DE WETERING

Introduction to Quantum Programming and Semantics

Chris Heunen

Spring 2025

1 Introduction

u tell a quantum computer what you want it to do? We'll compare and contrast seve:
as we'll see shortly, in the longer term better w

al existing

How should yq
languages intended to do this quantum programaning. But,
nced to be developed. There is no end-all-be-all answer or even consensus yet, but we'll build towards at least
1 time on thinking about what features should be available in a
wel

a medium-term answer. Mostly, we'll spes
good way to instruct a quantum computes
investigate semantics, that is, the abstract mathematical frameworks known to model quantum computing

To come up with good quantum programming primitives

1.1 Quantum Programming Languages

on, including sup 3
| instrueting a quantum
We will not

There are several physical platforms quantum computers are
trapped fons, photons, neutral atoms, and anyons, At the level of ‘bare mets
us telling it things like ‘shoot this laser at that angle for so and so long’
h such hardware instruction sets, and leave it to vendors to provide compilers into their

computer thus me

concern oursel
platform’s specific control
At a slightly higher le

quantum circuit. Just like &
carry information. This is independent of the actual hardware implementing these gates, but working at this

and restrictions.
1 of abstraction, the prevalent way to describe a quantum computation is as a
n electrical cireuit or a boolean circuit, it consists of gates applied to wires that

still quite low ley
First level design does not scale

respectively:

1 has three major drawbacks.
Here are three quantum circuits on 5, 2!

nd 125 qubits,

= R
it s yanii:
B B R
TR
il i
@
= otHo o—oto -
|
i g

Can you imagine specifying that by hand? Even with the support. of some control structure, it quickly
becom the forest for the trees. The same goes for matrices of complex numbe
the quantum circuits represent. Coming up with quantum algorithms for a small number of qubits i
hard enough. To discover new ones, thinking at a higher level of abstraction scems desirable.
Second, naively bolting classical control structures on quantum cireuit description does not help the
d-paper algorithm into a quantum circuit at any scale requires

. which
ready

hard to se

underlying problem.  Yes,

MATHEMATICS

Categories for
Quantum Theory:
An Introduction




Updates

® “Too much time spent on theory”
O No categories

e “Not enough programming”
O More focus on practicals

® “Not enough practice with graphical reasoning”
O Rebalanced, more introduction on diagrammatics

® “Unclear link between theory and coding”
O Cutting edge developments



Quantum Programming Languages



Levels of abstraction

Application

Programming Language

Assembly Language
Machine Code

® Circuit description languages

® Quantum circuits

® Quantum platforms: superconducting,
optical, trapped ions, neutral atoms

Devices (Transistors)




Existing Quantum “Programming” Languages

OpenQASM @% Q#




Problems of scale

e Hard to reason
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Need for abstraction: circuits

8-bit adder: dimension 21764



Need for abstraction: OpenQASM




Need for abstraction: Q#

operation TestBellState(count : Int, initial : Result) : (Int, Int) {

mutable numOnes 0;
using ((q@, g1) = (Qubit(), Qubit())) {
for (test in 1..count) {
Set (initial, q@);
Set (Zero, q1);

H(qo);
CNOT(qg@,q1);
let res = M(q0@);

// Count the number of ones we saw:
if (res == One) {
set numOnes += 1;
}
}

Set(Zero, q0);
Set(Zero, q1);
}

// Return number of times we saw a |0> and number of times we saw a |1>
return (count-numOnes, numOnes);



Need for abstraction: Qiskit

QuantumCircuit (3,

Q
0

This will create a quantum circuit equivalent to the following (still valid) circuit declaration:

rint (gc.qregs)

rint (gc.cregs)

[QuantumRegister (
[ClassicalRegister(2, 'c')]

Quantum/classical bit index-based addressing

In the spirit of register-less circuits, qubits and classical bits (clbits) can now be addressed directly by index, without a need for
referencing a register. In the following example, be11.h (0) attaches a Hadamard gate to the first quantum bit.

bell QuantumCircuit (2, 2)




Need for abstraction: Quipper

qft’ :: [Qubit] -> Circ [Qubit]
qft’ [] = return []
qft’ [x] = do
hadamard x
return [x]
qft’ (x:xs) = do
xs’ <- qgft’ xs
xs’’ <- rotations x xs’ (length xs’)
x’ <- hadamard x
return (x’:xs’’)

where
rotations :: Qubit -> [Qubit] -> Int -> Circ [Qubit]
rotations _ [] _ = return []

rotations ¢ (q:gs) n = do
gs’ <- rotations ¢ gs n
let m = ((n + 1) - length gs)
q’ <- rGate m q ‘controlled‘ c
return (q’:qs’)



Semantics



Meaning

Are these two programs the same?

P=(if 1 = 1 then F else G)
Q= (if 1 = O then F else F)

e Different syntax

® Different operationally Dl — _ [
® But denote same algorithm: [P = [l = [F]



Denotational semantics [-]

programs » mathematical objects

® Operational:

remember implementation details =

® Denotational:
see what program does conceptually

Why?

® Ground programmer’s unspoken intuitions
e Justify/refute/suggest program transformations
® Understand programming through models



Programming and semantics

® \What if P, Q executables instead of source code? Black box.
But can still analyse information flow.

® Empirical method: know how quantum theory works, but why?
® Cannot copy or delete, how to handle recursion?
® |nvestigate semantics to design good programming language

® “Semantics = programming language”



Diagrammatic reasoning



All about pictures

can manipulate like flow chart
mathematically rigorous backend
complete for quantum computation
higher level than quantum circuits

built up from basic elements: Z and X observables



Workflow
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VS

Rules of engagement
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Graphical rewriting




ZX calculus
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The plan:

To find good syntax and constructs for quantum programming,
Compare and contrast existing languages, and
Investigate semantics first, specifically

Founding graphical programming language
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