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Practicalities

● Course team:
○ Chris Heunen
○ Kim Worrall

● Opencourse, Learn, Piazza
● Lectures: 

○ Tuesday 2-3pm: Medical School G.14
○ Thursday 2-3pm: High School Yards G.01

(Week 4: Lister G.01, Week 10: Lister G.13)

● Tutorials:
○ Wednesday 11am-12 weeks 3-9: High School Yards G.01

● Labs:
○ Wednesday 2-3pm week 7: Appleton 5.05



Assessment

● Labs (0%): practical
 

● Tutorials (0%): exercise sheets
 

● Coursework (30%): week 5
 

● Exam (70%): April-May diet



Course Material



Updates
● “Too much time spent on theory”

○ No categories
 

● “Not enough programming”
○ More focus on practicals

 

● “Not enough practice with graphical reasoning”
○ Rebalanced, more introduction on diagrammatics

 

● “Unclear link between theory and coding”
○ Cutting edge developments



Quantum Programming Languages



Levels of abstraction

● … ?
 

● Circuit description languages
 

● Quantum circuits
 

● Quantum platforms: superconducting, 
optical, trapped ions, neutral atoms 



Existing Quantum “Programming” Languages

Quipper
Silq

Qiskit

OpenQASM

Cirq

Q#

Tket

Pennylane

Pyquil



Problems of scale

● Hard to reason
 

● Hard to optimise
 

● Algorithm discovery
 

● Control structures



Need for abstraction: circuits

8-bit adder: dimension 21764!



Need for abstraction: OpenQASM



Need for abstraction: Q#



Need for abstraction: Qiskit



Need for abstraction: Quipper



Semantics



Meaning
Are these two programs the same?

● Different syntax
● Different operationally
● But denote same algorithm: 



Denotational semantics
● Operational: (efficiency)

remember implementation details 
 

● Denotational: (correctness)
see what program does conceptually 

Why?

● Ground programmer’s unspoken intuitions
● Justify/refute/suggest program transformations
● Understand programming through models



Programming and semantics

● What if P, Q executables instead of source code? Black box.
But can still analyse information flow.
 

● Empirical method: know how quantum theory works, but why?
 

● Cannot copy or delete, how to handle recursion?
 

● Investigate semantics to design good programming language
 

● “Semantics = programming language”



Diagrammatic reasoning



All about pictures
● can manipulate like flow chart

 
● mathematically rigorous backend

 
● complete for quantum computation

 
● higher level than quantum circuits

 
● built up from basic elements: Z and X observables



Workflow



Rules of engagement

vs



Graphical rewriting



ZX calculus



The plan:

● To find good syntax and constructs for quantum programming,
 

● Compare and contrast existing languages, and
 

● Investigate semantics first, specifically
 

● Founding graphical programming language
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