
Introduction to Quantum 
Programming and Semantics

Chris Heunen University of Edinburgh

Lecture 1: Introduction



Practicalities

● Course team:
○ Chris Heunen
○ Kim Worrall

● Opencourse, Learn, Piazza
● Lectures: 

○ Tuesday 2-3pm: Medical School G.14
○ Thursday 2-3pm: High School Yards G.01

(Week 4: Lister G.01, Week 10: Lister G.13)

● Tutorials:
○ Wednesday 11am-12 weeks 3-9: High School Yards G.01

● Labs:
○ Wednesday 2-3pm week 7: Appleton 5.05



Assessment

● Labs (0%): practical
 

● Tutorials (0%): exercise sheets
 

● Coursework (30%): week 5
 

● Exam (70%): April-May diet



Course Material



Updates
● “Too much time spent on theory”

○ No categories
 

● “Not enough programming”
○ More focus on practicals

 

● “Not enough practice with graphical reasoning”
○ Rebalanced, more introduction on diagrammatics

 

● “Unclear link between theory and coding”
○ Cutting edge developments



Quantum Programming Languages



Levels of abstraction

● … ?
 

● Circuit description languages
 

● Quantum circuits
 

● Quantum platforms: superconducting, 
optical, trapped ions, neutral atoms 



Existing Quantum “Programming” Languages

Quipper
Silq

Qiskit

OpenQASM

Cirq

Q#

Tket

Pennylane

Pyquil



Problems of scale

● Hard to reason
 

● Hard to optimise
 

● Algorithm discovery
 

● Control structures



Need for abstraction: circuits

8-bit adder: dimension 21764!



Need for abstraction: OpenQASM



Need for abstraction: Q#



Need for abstraction: Qiskit



Need for abstraction: Quipper



Semantics



Meaning
Are these two programs the same?

● Different syntax
● Different operationally
● But denote same algorithm: 



Denotational semantics
● Operational: (efficiency)

remember implementation details 
 

● Denotational: (correctness)
see what program does conceptually 

Why?

● Ground programmer’s unspoken intuitions
● Justify/refute/suggest program transformations
● Understand programming through models



Programming and semantics

● What if P, Q executables instead of source code? Black box.
But can still analyse information flow.
 

● Empirical method: know how quantum theory works, but why?
 

● Cannot copy or delete, how to handle recursion?
 

● Investigate semantics to design good programming language
 

● “Semantics = programming language”



Diagrammatic reasoning



All about pictures
● can manipulate like flow chart

 
● mathematically rigorous backend

 
● complete for quantum computation

 
● higher level than quantum circuits

 
● built up from basic elements: Z and X observables



Workflow



Rules of engagement

vs



Graphical rewriting



ZX calculus



The plan:

● To find good syntax and constructs for quantum programming,
 

● Compare and contrast existing languages, and
 

● Investigate semantics first, specifically
 

● Founding graphical programming language


	Introduction to Quantum Programming and Semantics
	Practicalities
	Assessment
	Course Material
	Updates
	Quantum Programming Languages
	Levels of abstraction
	Existing Quantum “Programming” Languages
	Problems of scale
	Need for abstraction: circuits
	Need for abstraction: OpenQASM
	Need for abstraction: Q#
	Need for abstraction: Qiskit
	Need for abstraction: Quipper
	Semantics
	Meaning
	Denotational semantics
	Programming and semantics
	Diagrammatic reasoning
	All about pictures
	Workflow
	Rules of engagement
	Graphical rewriting
	ZX calculus
	The plan:

