Introduction to Quantum
Programming and Semantics

Lecture 3: Composition and tensor product

Chris Heunen % University of Edinburgh

Overview

e OpenQASM

e Tensor product

e Deutsch-Jozsa: running example

il

Il
Q
Il

OpenQASM

OpenQASM

e |BM, butde facto standard

e Meant as intermediate representation

e Circuitdescription

Features

e Abstraction:
o Precise location of qubit doesn’t matter
o Descriptive names for variables
o Compile-time constants

e Typing
o qubit, bit, int, angle
o registers

e Structure
o conditionals
o loops
o subroutines

Types and gates

e Variables are declared and initialised
bit b;
qubit q;
reset q;

e Single built-in quantum gate U

[cos(a/2)
Ul byel= (e bsin(a/2)

—e*“sin(a/2)

') cos(a/2)

)

Subroutines

gate X a {
U(pi, 8, pi) a;
}

gate H a {
Uu(pi/2 , 0, pi) a;
}

Composition
e Statements separated by semicolons
e Whitespaceignored

e Semantic structure: composition
o sequential composition of quantum circuits
o multiplication of unitary matrices

Tensor product

§)1/\92@ 7uéza.‘)(,b> 53 GL
4 7%/73 ; (CL) @ - @ (C

W
. . N hos
e Size fixed at declaration

e Interpreted as tensor product 5 7&«%?} - (€)= c'=C
a L N '
(C O/): TZ‘ - 6 —

(10)=9 € —C

Registers of multiple qubits

feg cleqt — C o’
I re ah Le LA ; "
wecher rocluct
A9 45 ak pk bk LR /e/ Kro f
< 0/ = v & C/\ D/Z //\
09 z

Cy4 cl ﬂ(& a//é

(\/ w) " > VW

V ox W blrear g/ = 4 B lif-Z%JZ

) €W

”7/@%50’)’)9}/‘66@/@4% W}‘Q é/lll;\ea/r Wﬁ /@@W)

Tensor product interacts with composition

e Interchange law

[T el—&—E— I
-

_ H — 1k

> 3
(,074}765/'71/‘0’)4
S
2550 ceod !
ve
Ao
((? O/) = (| |
— (4
%9/ o/

ot
(.0 Corvtein
tabve
5+f
£/
°J

W
(/0'7/!/\ S,
7 s/ Hom
Assscialn
h
@ (
paf) =
@ﬁ)®f

5
VeW =~
~ W
v

Controlled gates

e Modifier
ctrl @ U (a, b, c) q_reg [0], qg_reg [1];

e Interpreted semantically as matrix oo> 101> 1,05 |,

I o i o 6 |o0™
1@U(CL, b, C) — o | i o O [or™>
_____ o o i .] e

o O E _ .)I\>

Example

_gate Ha {
U (pi/2, @, pi) a;
}

gate CX a, b {

}

qubit [2] = q_reg;

reset g_reqg,

H g_reg [@];

{|[CX q_reg [@], qg_reg [1];

ctrl @ U (pi, @, pi) a, b;

\)

/6 e

Example

gate H a {
U (pi/2, 0, pi) a;
}

gate CX a, b {

ctrl @ U (pi, 0, pi) a, b;

}

qubit [2] = q_reg;
reset q_reg;
H q_reg [9];

CX q_reg [0], q_reg [1];

S

SI-

(00) + |11))

Deutsch-Jozsa

All-or-nothing oracular promise problems
e Decide on asolution without relying on approximation
e |nputisprovided as oracle
e Relies on promise about ‘global behaviour’ of input
e Quantum algorithm faster than best-known classical algorithm

e E.g.Shor, Grover, hidden subgroup

Setting
e Input: 2-colouring f:{0,1}"->{0,1} of bitstrings

e Promise:fiseither
o Constant: any input gets same colour
o Balanced: O on half the inputs, 1 on the other half

e Task: find out whichis the case

Oracles | —] as>
|o>—H — Us —(H/—]ac>
IOHE— "[E\l Qz>

e Canaskffor its value on some bitstring [e>—In]—

e Bennett’s trick turns f into unitary gate

Uf|zy) = |z) ® ly XOR f(x))

Deutsch-Jozsa circuit

n

’() e 0>ﬁ; H®n H®n

1) H

Example oracle

gate Oracle x y z {
CX x z;
CXy z;

zyz | © XOR y | z XOR (z XOR y)
000 0 0
001 0 1
010 1 1
011 | 0
100 1 1
101 1 0
110 0 0
111 0 1

Implementation

// declare three qubits

qreg Xx;

qreg y,

qreg z;

// set the three qubits to |6>, |0>, and |1>
reset Xx;

reset y;

" reset z;
’0...0>7L gen H®n A X z:
U} // apply Hadamard to all three qubits
H x;
1) H Hy;
H z;
// apply the oracle
Oracle x y z;
// apply Hadamard to the first two qubits
H x;
Hy;
// measure the first two qubits
bit a = measure Xx;
bit b = measure y;

Summary:

OpenQASM low-level de-facto standard circuit description language
To interpret it, semantics needs both sequential and parallel composition
Tensor products of matrices

Deutsch-Jozsa prototypically solves all-or-nothing oracular promise problem

