Introduction to Quantum
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Lecture 3: Composition and tensor product
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Overview

e OpenQASM

e Tensor product

e Deutsch-Jozsa: running example
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OpenQASM



OpenQASM

e |BM, butde facto standard

e Meant as intermediate representation

e Circuitdescription



Features

e Abstraction:
o Precise location of qubit doesn’t matter
o Descriptive names for variables
o Compile-time constants

e Typing
o qubit, bit, int, angle
o registers

e Structure
o conditionals
o loops
o subroutines



Types and gates

e Variables are declared and initialised
bit b;
qubit q;
reset q;

e Single built-in quantum gate U
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Subroutines

gate X a {
U(pi, 8, pi) a;
}

gate H a {
Uu(pi/2 , 0, pi) a;
}



Composition
e Statements separated by semicolons
e Whitespaceignored

e Semantic structure: composition
o sequential composition of quantum circuits
o multiplication of unitary matrices



Tensor product
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Registers of multiple qubits
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Tensor product interacts with composition

e Interchange law
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Controlled gates

e Modifier
ctrl @ U (a, b, c) q_reg [0], qg_reg [1];

e Interpreted semantically as matrix oo> 101> 1,05 |,
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Example

_gate Ha {
U (pi/2, @, pi) a;
}

gate CX a, b {

}

qubit [2] = q_reg;

reset g_reqg,

H g_reg [@];

{|[CX q_reg [@], qg_reg [1];

ctrl @ U (pi, @, pi) a, b;
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Example

gate H a {
U (pi/2, 0, pi) a;
}

gate CX a, b {

ctrl @ U (pi, 0, pi) a, b;

}

qubit [2] = q_reg;
reset q_reg;
H q_reg [9];

CX q_reg [0], q_reg [1];
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Deutsch-Jozsa



All-or-nothing oracular promise problems
e Decide on asolution without relying on approximation
e |nputisprovided as oracle
e Relies on promise about ‘global behaviour’ of input
e Quantum algorithm faster than best-known classical algorithm

e E.g.Shor, Grover, hidden subgroup



Setting
e Input: 2-colouring f:{0,1}"->{0,1} of bitstrings

e Promise:fiseither
o Constant: any input gets same colour
o Balanced: O on half the inputs, 1 on the other half

e Task: find out whichis the case
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e Canaskffor its value on some bitstring [e>—In]—

e Bennett’s trick turns f into unitary gate

Uf|zy) = |z) ® ly XOR f(x))



Deutsch-Jozsa circuit
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Example oracle

gate Oracle x y z {
CX x z;
CXy z;

zyz | © XOR y | z XOR (z XOR y)
000 0 0
001 0 1
010 1 1
011 | 0
100 1 1
101 1 0
110 0 0
111 0 1




Implementation

// declare three qubits

qreg Xx;

qreg y,

qreg z;

// set the three qubits to |6>, |0>, and |1>
reset Xx;

reset y;

" reset z;
’0...0>7L gen H®n A X z:
U} // apply Hadamard to all three qubits
H x;
1) H Hy;
H z;
// apply the oracle
Oracle x y z;
// apply Hadamard to the first two qubits
H x;
Hy;
// measure the first two qubits
bit a = measure Xx;
bit b = measure y;




Summary:

OpenQASM low-level de-facto standard circuit description language
To interpret it, semantics needs both sequential and parallel composition
Tensor products of matrices

Deutsch-Jozsa prototypically solves all-or-nothing oracular promise problem



