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Overview

● Cups and caps give ability to feedback

● Bases: linear maps vs matrices

● Sums of diagrams

● Tensor networks



Trace and dimension
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Dimensions

the abstract sca is the decation

and equals the lirea-algebraic dimension

dim(AOB) = = = = = -dimlel- dim (/
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Bases



Orthonormal bases need to choose
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Sums of diagrams



Superposi9on
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Tensor contrac3on



Tensor networks
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Special cases
tensor product : (f@g)?= fi g?

matrix multiplication : Igoflij = I fi gi

trace : tref) = Ei fii



Summary:

● Graphical calculus automa?cally incorporates traces and dimensions

● It pays to be precise about choice of basis

● In computa?on it is handy to explicitly assume superposi?on

● Tensor networks are special case of graphical rewri?ng


