

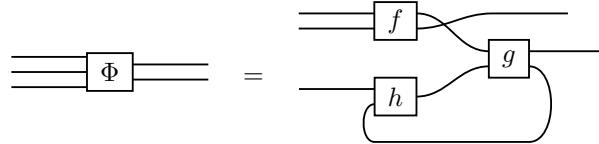
Introduction to Quantum Programming and Semantics 2026

Tutorial week 4

These exercises relate mostly to Lectures 6 and 7 on tensor networks and copying (and build on Lectures 4 and 5 on graphical calculus).

Exercise 1

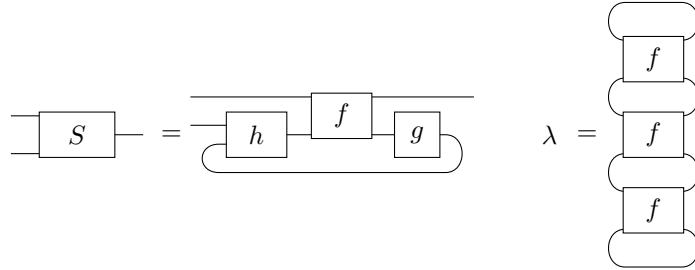
Write an algebraic expression for the following diagram using \otimes , \circ , SWAP, and $\text{Tr}(-)$.



Show that it evaluates to $\Phi_{abc}^{de} = \sum_{xyz} f_{ab}^{xd} g_{xy}^{ez} h_{cz}^y$.

Exercise 2

Write the following diagrams as tensor contractions, i.e. as sums over products of matrix elements f_{ij}^{kl} , etc.



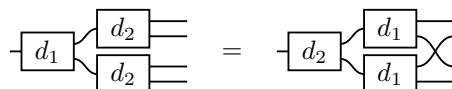
Exercise 3

If systems A and B have copying maps, we say that $f: A \rightarrow B$ is a homomorphism when:

- (a) Show that the empty system I (that pictorially consists of zero wires) always has a copy map that is associative, commutative, and unital.
- (b) Show that a homomorphism $a: I \rightarrow A$ is the same thing as a state of A that is copyable in the sense that it satisfies $d \circ a = a \otimes a$, where $d: A \rightarrow A \otimes A$ is the copying map.

Exercise 4

Suppose you have two copy maps $d_1, d_2: A \rightarrow A \otimes A$ that are associative, and unital with $c_1, c_2: A \rightarrow I$, and that interact in the following way:



(In terms of Exercise 3: each copy map is a homomorphism for the other.)

- (a) Show that $c_1 = c_2$.
- (b) Show that $d_1 = d_2$.
- (c) Show that d_1 is commutative.

(This is called the *Eckmann-Hilton argument*.)