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1 Introduction

How should you tell a quantum computer what you want it to do? We’ll compare and contrast several existing
languages intended to do this quantum programming. But, as we’ll see shortly, in the longer term better ways
need to be developed. There is no end-all-be-all answer or even consensus yet, but we’ll build towards at least
a medium-term answer. Mostly, we’ll spend time on thinking about what features should be available in a
good way to instruct a quantum computer. To come up with good quantum programming primitives, we’ll
investigate semantics, that is, the abstract mathematical frameworks known to model quantum computing.

1.1 Quantum Programming Languages

There are several physical platforms quantum computers are implemented on, including superconductors,
trapped ions, photons, neutral atoms, and anyons. At the level of ‘bare metal’, instructing a quantum
computer thus means telling it things like ‘shoot this laser at that angle for so and so long’. We will not
concern ourselves with such hardware instruction sets, and leave it to vendors to provide compilers into their
platform’s specific controls and restrictions.

At a slightly higher level of abstraction, the prevalent way to describe a quantum computation is as a
quantum circuit. Just like an electrical circuit or a boolean circuit, it consists of gates applied to wires that
carry information. This is independent of the actual hardware implementing these gates, but working at this
still quite low level has three major drawbacks.

First, gate level design does not scale. Here are three quantum circuits on 5, 25, and 125 qubits,
respectively:
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Can you imagine specifying that by hand? Even with the support of some control structure, it quickly
becomes very hard to see the forest for the trees. The same goes for matrices of complex numbers, which
the quantum circuits represent. Coming up with quantum algorithms for a small number of qubits is already
hard enough. To discover new ones, thinking at a higher level of abstraction seems desirable.

Second, naively bolting classical control structures on quantum circuit description does not help the
underlying problem. Yes, turning a pen-and-paper algorithm into a quantum circuit at any scale requires
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some sort of programming language. And the existing quantum programming languages we’ll consider –
OpenQASM, Qiskit, Quipper, Q#, and Silq – are all really circuit description languages. But instead of
telling them what you want to compute and let the compiler figure it out, you have to tell them exactly
how you want to compute something. For example, putting smaller subcircuits together into larger circuits
quickly runs down the scarce resources available. To enable the programmer to deal with larger problems,
patterns more abstract than quantum circuits seem desirable.

Third, optimising quantum circuits is a hard problem. How can you find a circuit that performs the same
computation but is cheaper? Even with the help of a compiler it is hard if you restrict yourself to replacing
quantum circuits by equivalent ones. To make progress you sometimes have to first make a quantum circuit
bigger before you can make it smaller. To find good optimisations, considering abstractions beyond quantum
circuits seems desirable.

What would be a good quantum programming language then? This is a brave new world, as many of
the lessons of classical computer science don’t apply. It is unclear what a quantum programming language
should look like: if you cannot copy or delete information, you cannot push and pop things on the stack, how
do you handle recursion, or even if-then-else statements? Therefore, investigating the semantics first is in a
sense the only way to inform the design of a good quantum programming language. The quest is on to find
the ‘right’ quantum programming primitives, that are efficient to translate into hardware instructions, that
are powerful enough to support advanced algorithms elegantly, and that are intuitive enough to the human
programmer to express their thoughts succinctly.

1.2 Semantics

Suppose F and G are two fragments of code, and consider the two computer programs:

P = (if 1 = 1 then F else G)

Q = (if 1 = 0 then F else F)

Are P and Q the same programs or not?
Syntactically, they are clearly different: the code fragment P is different than the code fragment Q. But

do P and Q compute the same? The answer depends on how fine-grained you are willing to look. From the
perspective of machine operations, a (nonoptimising) compiler will make P and Q into different executables,
because the machine will be storing G somewhere in memory when executing P , even though it is dead code
that will never be reached, but not so when executing Q. But from perspective of the user, P and Q behave
the same. They give the same output on every input. They denote the same algorithm, namely F.

This little analysis we have been doing is called semantics. We assigned to the two syntactical fragments
P and Q their meaning, in the form of some mathematical objects JP K and JQK. On the first level, operational
semantics, that mathematical object encoded all implementation details, so that we could retain the difference
between the dead code. On the second level, denotational semantics, that mathematical object was a set-
theoretical function that transforms input into output, and we didn’t care how exactly the function performed
that computation.

Denotational semantics is used to show that two programs implement ‘the same’ algorithm. For example,
there are many ways to sort an array, but as long as we don’t care about how fast the implementation is they
all do the same. Quicksort might be faster than bubble sort, but they both sort. In other words, denotational
semantics is used to prove that programs meet their specification, that they ‘do what they should do’.

The example with P and Q above was insultingly simple, but you can imagine it gets a lot more
complicated when for example recursion is in play. The important thing is that the assignment P 7→ JP K
preserves structure. For example, if we want to prove something about concatenating program fragments, we
should have some operation that concatenates their denotations:

JF; GK = JGK ◦ JFK
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Similarly, recursion requires us to talk about substitution (calling subprograms with some input) in the
syntax, so the semantics had better have some notion of function space

JF(X)K = JFK (JXK)

where JFK can live. For a third example, if the programming language describes concurrent computation,
there should be some sort of parallel composition of denotations:

JF par GK = JFK ⊗ JGK

1.3 Diagrammatic reasoning

The trick is to choose the mathematical object in which the denotations JFK live cleverly. It should have the
same structure as the programs you’re analysing, but abstract away from all the unimportant details, so that
powerful mathematical theorems can be used. Popular choices are λ-calculus or partially ordered sets. We
will use a graphical language called ZX-calculus. ZX-diagrams may look like simplistic pictures, but they are
perfectly rigorous. (Secretly, they’re based on the powerful mathematical tool category theory, but we will
only see this in passing.)

Aside from programme optimisations that are hard to automate or even spot if there are implementation
details in the way, there is another reason to consider semantics abstractly. Above we analysed code in an
actual programming language. If we consider quantum processes, there is no such neat description. The
systems are just black boxes that we cannot look inside. But we can still see how the boxes behave; that is
precisely the empirical method of physics! Analogously, in computer science, if I give you two executables
instead of their source codes, can you still say whether they implement the same algorithm? No, because
then you could solve the halting problem.

But you can still analyse the structure of the two computations using denotational semantics. You can
see how the information flows from input to output and how it is recombined in the process. This kind
of bookkeeping can be supported graphically in a beautiful way. Instead of boring algebra (like λ-calculus
or partially ordered sets), string diagrams like ZX-diagrams can be manipulated with graph rewriting, in a
way that can even be automated. In this way ZX-calculus itself becomes a quantum programming, where
we can combine subroutines in various ways to compose larger programs. It delivers optimisations that are
currently state of the art, so must capture some of the essence of quantum computing. Yet at the same time
ZX-diagrams are finite combinatorial objects, unlike matrices of complex numbers, so can be manipulated
easily by computers.

1.4 Sources

These notes will be your primary guide through this development. But as there is no point in reinventing
the wheel, you will often be directed to read bits and pieces of the following two texts:

[KW]: A. Kissinger and J. van de Wetering, “Picturing Quantum Software”
Cambridge University Press, 2025
https://github.com/zxcalc/book

[HV]: C. Heunen and J. Vicary, “Categories for Quantum Theory”
Oxford University Press, 2019
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2 Quantum circuits

Let’s make sure we’re all on the same page about the traditional model of what we mean when we say
quantum computing, before we get into fancier models.

2.1 Complex numbers

Quantum computing is about amplitudes, which are complex numbers. (The absolute square of these
amplitudes are real numbers, giving quantum computing its probabilistic character.) Read [KW 2.1.1, 2.1.2,
2.2.1, and 2.2.2] to refresh your knowledge of complex numbers, how qubits are modelled by unit vectors in
C2, and the Bloch sphere.

2.2 Matrices

In the traditional model, qubits evolve according to unitary matrices. These are reversible operations. We
will talk later about the irreversible operation of measurement, which is not modeled by a unitary matrix.
Read [KW 2.1.3] to refresh your knowledge of linear algebra.

Instead of unitaries, physicists often talk about Hamiltonians. These are self-adjoint matrices, whose
eigenvalues represent the possible energy levels of the system they represent. Don’t be scared: talking about
Hamiltonians is exactly the same as talking about unitaries, see [KW 2.2.3].

2.3 Quantum circuits

Quantum circuits are the de facto standard model of quantum computing. They are a succinct way to write
down unitary matrices. Read [KW 2.3] to learn their basics.

To connect back to Lecture 1, let us remark that we can think about quantum circuits as syntax, or
rudimentary quantum programs, and unitary matrices as semantics, or the meaning of quantum programs.
The semantics brackets J−K in this case interpret a circuit as a matrix. This means that first of all you need
to know how to interpret each of the gates in a quantum circuit. For example:

s
H

{
=

1√
2

(
1 1
1 −1

)
Next, notice that matrices have enough structure to interpret concatenation of two quantum circuits
inductively, namely by matrix multiplication:

s
C1 C2

{
=

s
C2

{
◦

s
C1

{

(Recall that in a matrix multiplication BA, the matrix A gets applied first, and then B.) Finally, matrices also
have enough structure to interpret parallel composition of two quantum circuits, namely by tensor product:

u

www
v

C1

C2

}

���
~

=

s
C1

{
⊗

s
C2

{

But we’ll discuss the details of tensor products next time. Thus you can interpret any quantum circuit as
a unitary matrix: slice it apart into horizontal and vertical layers, interpret each of the gates, and then put
the layers back together using matrix multiplication and tensor product.
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3 Composition and tensor products

In this lecture we’ll analyse our first quantum programming language, OpenQASM. It really isn’t much more
a computer-readable (but less human-readable) syntax for the graphical quantum circuit notation we saw
last time, but it will serve as a good example to illustrate the concepts of semantics and composition we’ve
already seen, and to introduce tensor products, and the Deutsch-Jozsa algorithm, which will be our running
example throughout the course.

3.1 OpenQASM

OpenQASM is a circuit description language developed with near-term applications in mind, i.e., to program
the (small and noisy) quantum computers we have today. Its main goal is to serve as an intermediate
representation for higher-level compilers in order to interact with quantum hardware. For example, it can
be used to interact with IBM’s quantum computers or Amazon’s Braket, although as we shall see later,
higher-level languages are also available for this task that use OpenQASM as a compilation target.

That it is a circuit description language means that OpenQASM programs are not meant to be run
directly on a quantum computer. Instead, an OpenQASM program is run on a classical computer to produce
a quantum circuit, which can then be handed off to a quantum computer for execution. Why go through all
of this trouble if, in the end, all we’re doing is describing quantum circuits?

• Abstraction: In a circuit, a single line denotes a single qubit, and its precise location matters to the
operation of the circuit. In OpenQASM, variables are used to represent (collections of) qubits, and can
be given descriptive names to better relay their intended use, and declared in any order. The precise
mapping of variables to qubits (known as routing) in a circuit is handled by the OpenQASM compiler.
Compile-time constants can also be used to describe algorithms that are flexible regarding the number
of qubits available, such as those for qubit arithmetic.

• Typing : Variables (and subroutines, see below) must be declared along with their types, such as qubit
(a qubit), bit (a classical bit), qubit[4] (an array of four qubits), int[16] (a classical 16-bit integer),
and so on. This can not only be used to catch errors in programming, but can also be used by the
OpenQASM compiler to improve the quality of the quantum circuit it produces.

• Structure: Larger programs are typically written by in a structured fashion by combining smaller parts
using things like conditionals, loops, and subroutines. Programming in this style greatly improves
the ability to read, understand, and debug a program, even as it grows quite large. You will notice
that quantum (or classical) circuits do not support either of these features (we say that they are
unstructured), but OpenQASM does, with the OpenQASM compiler able to compile these down to
quantum circuits.

Full documentation can be found at openqasm.com; here we give a brief overview of the core of the language.
It is imperative and statically typed. Statements are separated by semi-colons and whitespace is ignored.

Data types and variable declaration Unsurprisingly, OpenQASM has types for declaring bits and
qubits:

bit b;

qubit q;

Qubits stand apart from other data types a key way: they cannot be initialised in the same statement as
their declaration. In fact, the only built-in way to initialise a qubit is with the special statement ‘reset‘,
which sets the qubit to the 0 computational basis state:

qubit q;

reset q;
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Unitary quantum gates There is only a single built-in quantum gate, called U. It parametrises a single-
qubit unitary as a rotation of the Bloch sphere of the form

U(a, b, c) =

(
cos(a/2) −eic sin(a/2)
eib sin(a/2) ei(b+c) cos(a/2)

)
.

For example,

qubit q;

reset q;

U(pi ,0,pi) q;

enacts an X gate on the qubit q. Since q was reset to the 0 basis state, q is then in the 1 basis state at the
end of the program.

As the same gate can be applied many times, it would be cumbersome to use this syntax for each identical
call. Luckily, there is a way to abstract gate names: a block called gate. For example:

gate X a {

U(pi , 0, pi) a;

}

abstracts the X gate, while a Hadamard gate is built as:

gate H a {

U(pi/2, 0, pi) a;

}

3.2 Composition

The very basic feature of an OpenQASM program is that it is a sequence of lines. Each line is an instruction,
and subsequent lines are executed one after the other. Hence, to interpret it semantically in anyway, we
need some form of sequential composition. If OpenQASM is the syntax, the semantics could be quantum
circuits, which can be composed sequentially. Or the semantics could be unitary matrices, which can also
be multiplied. The important point is that any domain that OpenQASM semantics are to be interpreted in
must have some form of sequential composition.

3.3 Tensor products

Quantum circuits can also be composed in parallel. Similarly, OpenQASM programs can declare registers of
bits and registers of qubits:

bit [5] b_reg;

qubit [5] q_reg;

Registers have a fixed size and cannot be resized after declaration.
How are we to interpret these registers semantically? By tensor products of matrices. Read [KW 2.1.4]

to freshen up on the mathematics of tensor products.
Once we have registers of multiple qubits, it makes sense to talk about controlled gates. They are

constructed by adding a ctrl modifier to a pre-existing gate:

ctrl @ U(a,b,c) q_reg[0], q_reg [1];

Formally speaking, this implements the gate 1⊕U(a, b, c). This can then be abstracted using the gate block:

gate CX a, b {

ctrl @ U(pi , 0, pi) a, b;

}

CX q_reg[0], q_reg [1];
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constructs and runs a CX gate.
Putting it all together, here is a simple OpenQASM program generating a Bell state:

gate H a {

U(pi/2, 0, pi) a;

}

gate CX a, b {

ctrl @ U(pi , 0, pi) a, b;

}

qubit [2] = q_reg;

reset q_reg;

H q_reg [0];

CX q_reg[0], q_reg [1];

Indeed, it compiles into the following quantum circuit, whose matrix semantics are:

u

w
v

|0⟩

|0⟩

H
}

�
~ =

1√
2

(
|00⟩+ |11⟩

)

3.4 Deutsch-Jozsa

The Deutsch-Jozsa algorithm solves a certain problem faster in the quantum case than is possible in the
classical case. It is a typical example of a quantum algorithm that decides on a solution without relying
on approximation. We will be using it as a running example to illustrate quantum programming languages
with. The Deutsch-Jozsa algorithm solves a slightly artificial problem, but other algorithms in this family
include Shor’s factoring algorithm, Grover’s search algorithm, and the more general hidden subgroup problem.
These algorithms have an ‘all or nothing’ nature, meaning we can see the structural difference between no
information flow and maximum information flow.

The problem is the following. Suppose you have a 2-valued function {0, 1}n f {0, 1} on the of bitstrings
of length n. If the function f takes just a single value on every bitstring, it is called constant. Another
possibility is that the function takes the value 0 on exactly half the bitstrings, and takes the value 1 on the
other half; in this case it is called balanced. Most functions are neither, but you are promised that your
function is either balanced or constant. Your quest is to determine which of the two is the case.

The best classical strategy is rather simple. You have no knowledge of the structure of the function f
in general, so you can only sample the function on some bitstrings. If you find two bitstrings which have
different values, then f cannot be constant, so you conclude that f is balanced and are done. However, in
the worst case, if f is balanced you may have to sample 2n−1 + 1 bitstrings until you hit two bitstrings with
different values. If you sample this many bitstrings and find that f returns the same value for each one, then
you can conclude that f is constant.

In both implementations and semantics, we have to be more precise about how to access the function f .
A quantum computation only allows unitary operations; so we have to linearise the function {0, 1}n f {0, 1}
to a unitary matrix Uf , called an oracle. It is defined by:

Uf |xy⟩ = |x⟩ ⊗ |y XOR f(x)⟩ .

The Deutsch-Jozsa algorithm is now given by the following quantum circuit:

n|0 · · · 0⟩

|1⟩

H⊗n

Uf

H⊗n

H

7



We will see later why this is correct, but for now: if f is constant, the probability of measuring |0 · · · 0⟩ on
the first n qubits is 1, and if f is balanced, that probability is 0. Thus the quantum circuit indeed answers
our question.

Let’s implement Deutsch-Jozsa in OpenQASM. To keep it small, let’s set n = 2, and let’s choose f to be
the XOR function, which is balanced. To implement the oracle, we have to turn it into a 23-by-23 unitary
matrix with the following truth table on the computional basis states:

xyz x XOR y z XOR (x XOR y)
000 0 0
001 0 1
010 1 1
011 1 0
100 1 1
101 1 0
110 0 0
111 0 1

We can implement this unitary with two CX gates:

gate Oracle x y z {}

CX x z;

CX y z;

}

With the oracle in hand, we can now implement the rest of the Deutsch-Jozsa algorithm as follows:

// declare three qubits

qreg x;

qreg y;

qreg z;

// set the three qubits to |0>, |0>, and |1>

reset x;

reset y;

reset z;

X z;

// apply Hadamard to all three qubits

H x;

H y;

H z;

// apply the oracle

Oracle x y z;

// apply Hadamard to the first two qubits

H x;

H y;

// measure the first two qubits

bit a = measure x;

bit b = measure y;

We’ll talk about measurement later, but executing this shows that the output bits are a = 0 and b = 0,
showing that f was indeed balanced.
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4 Graphical calculus

Just like quantum circuits can be regarded as pictures of OpenQASM programs, we will develop a graphical
calculus for more general quantum programs. We will mostly use these diagrams as pieces of syntax, as
shorthands for their semantic interpretation as matrices. (We will not use it in this course, but it is good
to know that these graphical diagrams are much more powerful, and can be interpreted in any rich enough
semantic structure, most generally a monoidal category, in a rigorous way that is sound and complete.)

4.1 String diagrams

Forget for a minute that the gates in quantum circuits represent unitary matrices. Eventually, quantum
circuits are a particular king of flow diagrams. The wires carry some kind of information, that can possibly
be altered by passing through gates. This idea is much more general. For example, the gates do not have to
be invertible in the way that unitary matrices are.

A string diagram also consists of (a finite number of) wires that are combined by (a finite number of)
gates. Gates can have any number of input wires and any number of output wires. We are going to use string
diagrams as semantics for quantum programs. Because quantum programs can be composed in sequence, we
need to be able to compose string diagrams sequentially. This is done by simply wiring up the outputs of
the first with the input of the second. For example, the sequential composition of a ‘gate’ with two outputs

f

with a ‘gate’ with two inputs

g

is the string diagram

f g .

If our syntax has some notion of sequential composition written ◦, then the semantic relation is

Jg ◦ fK = f g = JgK ◦ JfK .

Similarly, quantum programs can be composed in parallel. Thus we also need to be able to compose
string diagrams in parallel. This is done by simply stacking the string diagrams on top of each other. If two
‘gates’ f and g have semantics

JfK = f JgK = g

and the syntax has a notion of parallel composition written ⊗, then

Jf ⊗ gK =

f

g
= JfK ⊗ JgK .

Some relationships between string diagrams are graphically natural, so it makes most sense to use string
diagrams when these relationships also hold in our syntax and intended semantic models. For example, the
following interchange law holds for quantum circuits, complex matrices, and string diagrams:

(h⊗ k) ◦ (f ⊗ g) = (h ◦ f)⊗ (k ◦ g),

9



provided the types (number of input and output wires) of the ‘gates’ match. In string diagrams:

f

g

h

k

=

f

g

h

k

The gray dashed lines here are not part of the diagram, and just indicate the order in which we drew the
‘gates’ on the paper, which is inconsequential.

This also indicates how we can read a string diagram: just like a quantum circuit, it can be decomposed
into basic ‘gates’ using gray dashed lines, which are then recombined using sequential composition ◦ and
parallel composition ⊗. For example,

k

h

l

f g

decomposes along the gray dashed lines, and then algebraically recombines into

(h⊗ id) ◦ (g ⊗ id ⊗ l) ◦ (f ⊗ k).

Here, we have used a special ‘gate’ called id. It is like the identity matrix: it does nothing. More precisely,
id ◦ f = f = f ◦ id for any ‘gate’ f . In terms of string diagrams, we therefore draw it simply as a wire.

That leads to another property of string diagrams: it doesn’t matter how long of a piece of wire we use
for the identity ‘gates’. Similarly, it doesn’t matter whether wires are straight or wiggle around a bit. The
following two string diagrams are the same:

f
g

= f g

Only the connectivity of the ‘gates’ matters. (Well, for now, wires aren’t allowed to go ‘back in time’; we’ll
consider that next time.) More precisely, two string diagram are considered to be the same when there is a
4-dimensional isotopy between them. That means that you can smoothly morph one into the other, without
cutting any wires, and while keeping the connectivity the same. Imagine the diagrams being trapped between
pieces of glass. The input and output wires are nailed fixed, but inside you can move things around as you
please. Wires can cross each other, though, so we’re talking about 4-dimensional glass hypercubes:

= =

The rules of string diagrams are sound, meaning the following. Think of string diagrams as syntax, taking
semantics in matrices. Suppose you have chosen matrices to interpret some basic string diagram ‘gates’. If
two string diagrams composed of those basic ‘gates’ are equal, then also the composite matrices are equal.

10



Later, we will extend the string diagram calculus with other elements, that also make it complete, meaning
that if the composite matrices are equal, then there is a string diagrammatic proof that the string diagrams
are equal.

Read [HV 0.1.5 and 1.1.1, and perhaps 1.2] for more information. Warning: string diagrams are often
read bottom-to-top, or top-to-bottom, instead of left-to-right, as we have done here. Another warning: we
have described ‘gates’ quite loosely, and [HV] makes them much more precise, using the notion of a category ;
we will not need that amount of precision in this course, so don’t worry if you don’t get it all.

4.2 States, effects, and scalars

Unlike quantum gates, string diagram ‘gates’ do not have to have the same number of inputs as outputs.
What happens if the number of input or output wires is zero?

A string diagram with no input wires is called a state. For example, a state called |0⟩ would be drawn as
a string diagram as

|0⟩

or even
|0⟩

Starting from the empty system, after ‘executing’ this string diagram, we have created a single system in
some specified state. Let us emphasise that |0⟩ is just a piece of syntax here, a bunch of symbols. It doesn’t
mean anything yet, and could equally just be called f or g. But when this syntax is interpreted semantically,
we intend it to be the computational basis state |0⟩ = ( 10 ) ∈ C2.

A string diagram with no output is called an effect. For example, the string diagram syntax

|0⟩ = |0⟩

is interpreted semantically as the row vector ⟨0| = (1 0). You can think about it like this: it represents the
fact that a measurement in the computational basis happened, and the outcome was 0. This is also called
postselection. (In one of the last lectures, about the quantum programming language Silq, we will see that
this can be used constructively: if you can do a quantum uncomputation to make sure that the qubit is left
in a specified state, then the qubit does not have to be measured destructively, possibly influencing the rest
of the computation, and can instead be reused.)

Read [HV 1.1.2 and 1.1.4] for more information.
A string diagram with no input and no output at all is called a scalar. It is drawn simply as a box

without any attached wires. According to our rule that ‘only connectivity matters’, these scalars can just
float through the diagram at will. It doesn’t matter where you draw them, the result will always be the same
as a string diagram. You may as well put all scalars at the front of the diagram, but sometimes it’s handier
to keep them various places in the middle. It also follows that it doesn’t matter in which order scalars are
‘executed’: scalars are commutative. Semantically, scalars will be interpreted as 1-by-1 matrices, that is, as
complex numbers. (Read [HV 2.1] for more information if you want more details, but be warned that this is
mostly about categories we will not need.)

4.3 Entanglement

States have zero inputs, but they can have more than one output. For example, we can easily draw bipartite
states:

|ψ⟩

11



At the level of generality of string diagrams, we can already speak about entanglement, as follows. Some
bipartite states will be of the form

|ψ⟩ =
|ϕ⟩

|θ⟩

These bipartite states are called separable. All other bipartite states are called entangled. Check that this
matches your intuition for these words when you interpret the string diagram syntax semantically as matrices.
(See [HV 1.1.3] for more (categorical) details.)

12



5 Bending space and time

Some bipartite states are very special: they are not just entangled, but maximally entangled. If we want
to have any sort of graphical syntax that is to be interpreted semantically as such Bell states, we will need
special string diagrams.

5.1 Cups and caps

A Bell state is the entangled bipartite state (|00⟩ + |11⟩)/
√
2 in C2 ⊗ C2. It cannot be written in the form

|ψ⟩ ⊗ |ϕ⟩. If we identity the space of two qubits with C4, the Bell state is

|Bell⟩ =


1
0
0
1

 ∈ C4.

Its transpose is the row vector
⟨Bell| =

(
1 0 0 1

)
∈ C4.

Together, they satisfy a very special equation:

(⟨Bell| ⊗ id) ◦ (id ⊗ |Bell⟩) = id.

(Multiply out the matrices to see this!) It is called the snake equation, because it looks like this when we
draw it as a string diagram:

|Bell⟩

⟨Bell|
=

We will adopt a purely graphical counterpart that acts like a Bell state, called a cup, drawn as

and a purely graphical counterpart that acts like the transpose of a Bell state, called a cap, drawn a

We postulate that the cup and cap must satisfy the snake equation:

= (∗)

and furthermore:

= =
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String diagrams with cups and caps are no longer circuit diagrams, because time no longer unambiguously
flows from left to right. In-in and out-out connections and loops are now allowed. But even with cups and
caps, only connectivity matters in string diagrams. For example:

f g
=

g f

Now read [KW 2.1.7].

5.2 Teleportation

Cups and caps ‘bend time into space’. This can be interpreted in a quantum world in a natural way. Look
again at the snake equation (∗), but this time think about the spatial distribution of all the wires:

Bob

Alice =

Reading the left-hand side diagram as a history of processes that happened: Alice receives an unknown qubit;
Alice and Bob share a maximally entangled state; Alice measures the input qubit and her half of the shared
pair and we postselect on a certain outcome. The right-hand side then says that after this procedure, Alice’s
unknown input qubit ends up as Bob’s output qubit. In other words, this implements quantum teleportation.
(We will deal with the postselection later in the course.)

Thus we can think of the left-hand side of the snake equation as graphical syntax for a program
implementation, the right-hand side as a specification, and the equation as showing that the program satisfies
the specification. Interpreting this teleportation program semantically as complex matrices (do it!) results
in the usual quantum teleportation protocol. We won’t do so in this course, but it can also be interpreted
in other semantic domains: interpreting wires as binary relations between sets results in the usual one-time
pad crypto protocol.

Now read [HV 3.2].
Incidentally, anticipating measurement, the teleportation protocol/circuit looks like this in OpenQASM:

gate H a {

U(pi/2, 0, pi) a;

}

gate X a {

U(pi , 0, pi) a;

}

gate Z a {

U(0, 0, pi) a;

}

gate CX a, b {

ctrl @ U(pi , 0, pi) a, b;

}

14



qubit input_state;

reset input_state;

// Create a Bell state

qubit [2] bell_state;

reset bell_state;

H bell_state [0];

CX bell_state [0], bell_state [1];

// Entangle the input state with Bell state

CX input_state , bell_state [0];

// Measure and correct

bit m1 = measure input_state;

bit m2 = measure bell_state [0];

if (m2 == true) {

X bell_state [1];

}

if (m1 == true) {

Z bell_state [1];

}

5.3 Taking names

We can make more precise that cups and caps ‘trade space for time’ and vice versa. Any string diagram f
with m input wires and n output wires can be turned into a state ⌜f⌝ on m+ n wires:

⌜f⌝ ... =
f

...

...

The state ⌜f⌝ is sometimes called the name of f . Vice versa, any state ψ on m+ n wires can be turned into
a string diagram with m input wires and n output wires:

ψ
...

...

It is easy to see (do it!) that turning a string diagram into its name and then back again ends up with the
original diagram, and that turning a state into a string diagram and then back again ends up with the original
state. In other words, there is a one-to-one correspondence between states on m+n wires and ‘gates’ with m
input wires and n output wires. This is sometimes called the Choi-Jamiolkowski isomorphism or map-state
duality.
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5.4 Transpose and adjoint

If f is a string diagram with m inputs and n outputs, using caps and cups we can construct a string diagram
with n inputs and m outputs, called its transpose:

f

...

...

Basically the whole diagram is rotated 180 degrees. We will write f∗ for this transpose diagram. Transposition
is an operation that makes sense on the graphical syntax of our programs. It correspond semantically to
taking the transpose of a matrix. Taking the transpose twice does nothing, both for string diagrams and for
matrices. (Don’t just believe me, check this!) If you’re brave, read [HV 3.1.2] for some more properties of
transposes.

There is another way to reverse string diagrams. If f is a string diagram with m inputs and n outputs,
we can draw it reflected in a vertical mirror to get a string diagram f† with n inputs and m outputs. This
is called the adjoint of a string diagram. Of course, taking the adjoint twice does nothing: f†† = f . Having
the structure of adjoints on our graphical syntax means that every program can be reversed in some sense.
This can be interpreted semantically in unitary matrices by sending the adjoint of a string diagram to the
adjoint of its interpretation. For example:

u

v
( )†}

~ =

t |

= ⟨Bell| = (|Bell⟩)† =

t |†

Because you cannot tell the difference between a box, the 180-degree rotation of the box, and the vertical
reflection of the box, it makes sense to not use rectangles for ‘gates’ in our graphical programming language,
but to break the symmetry by adding a dot in a corner, or adding a wedge to one of the edges, so you can
tell ‘which way is up’. [HV] does this, but the graphical language we’re working towards is in fact invariant
under rotational and reflection symmetry, so we won’t bother with this there.
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6 Tensor networks

The graphical programming language we’re building up is indeed purely graphical. But it will be handy to
import some aspects of linear algebra for two reasons. First, eventually we will be able to replace postselected
measurements by proper probabilistic measurements graphically, but that’s rather advanced, and in the mean
time it’s easier to keep the probabilities explicit. Second, allowing sums of diagrams makes it easier to connect
to known structures like orthonormal bases and tensor networks.

6.1 Trace and dimension

First, two more properties of cups and caps, namely trace and dimensions. You may expect this to need
something like sums or bases, but it works purely graphically.

What happens when you compose a cup and a cap straight up?

Because there are no input wires nor output wires, you clearly get a scalar. Which one? Its semantic
interpretation of a matrix will tell you: it’s the complex number 2. In other words, it’s the dimension of the
qubit.

Moreover, this graphical notion of dimension behaves like it should: the dimension of n wires is the string
diagram consisting of n circles, so correspond to the scalar 2n. That is, the dimension of a tensor product if
the product of the dimensions. In particular, the dimension of 0 wires is the scalar 1.

What happens when you compose some string diagram f with a cup and a cap?

f

Interpreted semantically, you get the trace of the matrix JfK. (Work it out!) It’s drawn here for a one-qubit
‘gate’ f , but it works equally for n-qubit string diagrams. That makes sense, because the dimension of (C2)⊗n

is the trace of the identity matrix on n qubits. Some properties of traces, that are unpleasant to prove with
matrices, are now immediately obvious from the graphical rule that only connectivity matters. For example,
as we saw last time, the trace of g ◦ f equals the trace of f ◦ g.

If you have a string diagram with m+o input wires and n+o output wires, you can also build a ‘feedback
loop’ on the last o wires to get a diagram with m inputs and n outputs. The trace is the special case where
m = n = 0. The general case corresponds to a partial trace.

(If you feel like it, have a look at the fairly technical section [HV 3.4.5] now to see how these properties
of the graphical calculus mean that you cannot have a sound semantic interpretation in infinite-dimensional
Hilbert spaces.)

6.2 Bases

Let’s forget for a minute that wires represent qubits, and instead let them represent complex vector spaces
Cn of arbitrary (finite) dimension. A basis for this ‘type’ is a set of states {e1, . . . , em} that is minimal in
the sense that for all n-by-p matrices f and g, if fei = gei for all i ∈ {1, . . . ,m}, then f = g. All bases of Cn
are of the same size, namely n, which is the dimension of the space Cn. You probably knew all this, but the
point is that this is a purely string-diagrammatic definition: it only talked about composition of ‘gates’ and
states, never about sums. It still talks about a basis as a set of states, though, and later we will see a way to
make even that into a derived concept using ‘gates’ only.
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Two states are called orthogonal when ⟨ϕ|ψ⟩ = 0, and a basis is called orthonormal when

⟨ei |ej⟩ =

{
1 if i = j,

0 if i ̸= j.

for all i, j ∈ {1, . . . ,m}.
Given an orthonormal basis {e1, . . . , en}, we can recover the matrix of a ‘gate’ f as

f ji = ⟨ej | f |ei⟩ .

Notice that the cup is defined by
n∑
i=1

|ii⟩

for any orthonormal basis {|0⟩ , |1⟩} of C2. (And the same holds for any Cn.) Similarly, the trace defined
above is given by

Tr(f) =

n∑
i=1

⟨i| f |i⟩ .

6.3 Sums

Another useful property of orthonormal bases is that they diagonalise the identity matrix:

id =

n∑
i=1

|i⟩ ⟨i| .

This will be very useful to decompose string diagrams into linear combinations of simpler string diagrams.
For example,

(g ◦ f)ji =
n∑
k=1

gjkf
k
i .

Now read [KW 2.1.5].

6.4 Tensor networks

All these sorts of calculations of sums of string diagrams culminate in tensor networks. These are a notation
used often in many-body quantum physics as well as in machine learning. They look, for example, as follows:

h

j

i k

f
x

y

z

l

g

They model a calculation to be done: how to contract a wire. In the above example, we could contract x, y,
and z to get a ‘tensor’ with inputs i and j and outputs k and l. Contraction simply happens by multiplying
the matrices in each box and sum over the connecting wires:∑

x,y,z

f l,yx,zg
z
yh

k,x
i,j .
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Computationally, the trick is to find algorithms that can do the tensor contraction efficiently in cases of
interest, without calculating every entry of the very high-dimensional tensor with over all possible indices.

Special cases of tensor contraction are tensor product, matrix multiplication, and trace:

(f ⊗ g)k,li,j = fki g
l
j

(g ◦ f)i,j =
∑
k

fki g
j
k

Tr(f) =
∑
i

f ii

Now read [KW 2.1.6].
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7 Copying and deleting

A choice of basis, like the computational basis {|0⟩ , |1⟩} for C2, that we talked about last time, is a choice.
To talk about matrices you need to make this choice, as developing in a different basis will lead to a different
matrix. There is no such thing as a generic choice. Let’s examine what we can say once we have made a
choice of basis, trying not to mention the basis elements themselves at all.

Having made a choice of basis is the key difference between quantum information and classical information,
between qubit and bit in OpenQASM. For example, it let’s us copy classical information. The following
quantum circuit, for example, copies the computational basis in the sense that it sends |0⟩ to |00⟩, and |1⟩ to
|11⟩ – but it copies no other basis, so for example |+⟩ = (|0⟩+ |1⟩)/

√
2 gets sent to (|00⟩+ |11⟩)/

√
2 and not

to |+⟩ ⊗ |+⟩.

=
|0⟩

Let’s draw a copying circuit like that as on the left above, and investigate what properties such a ‘gate’ has,
graphically. The key properties are:

• associativity : copying an input, and then copying one of the outputs once more should result in three
equal outputs, and so should be the same as copying an input and then copying the other output once
more;

• commutativity : copying an input should result in two equal outputs, so should be the same as copying
an input and then swapping the two outputs;

• unitality : copying an input and then forgetting either of the outputs should result in the same as (just
doing nothing to) the input.

Read [HV 4.1.1] to find out about these properties.

7.1 No-cloning

We can phrase the famous no-cloning theorem of quantum information theory purely graphically. It says
that you cannot have a uniform copying machine (that can perfectly clone an unknown input) in a quantum
setting. In other words: you cannot have cups and caps (entanglement), and at the same time have a uniform
family of copying map on all wires, at the price of everything degenerating. The same holds a uniform deleting
machine: not possible in the quantum setting.

Read [HV 4.2] (but skip Proposition 4.16); the text talks about categories, but all proofs are purely
graphical and should make sense to you.

7.2 Products

As we saw in Section 4.3, entanglement means that bipartite states are not entirely determined by states of
the two components. Vice versa, in a classical setting, giving a bipartite state is the same as giving one state
for each component.

This is another graphical way to say that a theory is classical. Given two bunches of wires A and B, a
product is a third bunch of wires P , together with two ‘gates’ p : P A and q : P B satisfying the following
property: if P ′ is any other bunch of wires, and p′ : P ′ A and q′ : P ′ B any other ‘gates’, then there is
a unique gate f : P ′ P such that p′ = p ◦ f and q′ = q ◦ f . In pictures: if

p...P

... A q...P ... B
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then there is a unique f such that

p′
...P ′

...
= f p...

...

... A

p′
...P ′ ...

= f p...
... ... B

This kind of property is called a universal property, because P is universal, in the sense that if there is
any other P ′ pretending to do the same job, it must in fact factor through P .

To differentiate from tensor products, we will also call this a cartesian product or categorical product.
Notice that the no-cloning theorem said that you cannot simultaneously have cups and caps and products,
at the price of your whole theory degenerating.

Now read [HV 4.3] to find out the precise way in which uniform copying and deleting say that the wires
in string diagrams must be carrying classical information.

7.3 Categories

You could interpret the string diagrams differently: wires do not just represent qubits or even vector spaces
Cn, but any other sort of objects; and ‘gates’ do not just represent unitary gates or even linear matrices, but
any other sort of morphisms. All that is needed for a sensible interpretation is that morphisms of the right
type can be composed sequentially

(B
g
C) ◦ (A

f
B) = (A

g◦f−→ C)

and in parallel

(A
f
B)⊗ (A′ f

′

B′) = (A⊗A′ f⊗f
′

−→ B ⊗B′)

in a way that makes things like the interchange law true. Such a structure is called a (monoidal) category.
(Especially the tensor product necessitates a lot of bookkeeping, that makes string diagrams much easier to
work with than monoidal categories, but in principle they are nearly the same.)

For example, wires could represent sets, and ‘gates’ could represent binary relations between sets. This
is a well-defined monoidal category, in which you can even interpret cups and caps sensibly. In fact, this is
the category in which the teleportation protocol becomes interpreted as one-time pad cryptography.

Read [HV 0.1 and Example 3.18] for more information.
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8 Classical data

A choice of orthonormal basis induces a copying map. Can you recognise when a copying map is induced by
a choice of orthonormal basis?

8.1 Frobenius algebras

The key properties of a copying map that means it copies an orthonormal basis are the following. (Read [HV
Sections 5.4.1 and 5.4.2] if you’re interested in the proof.)

• associativity

• commutativity

• the Frobenius law : this property guarantees that the basis vectors are orthogonal (from which it follows
that they form a basis), and uses both the copying map and its adjoint.

=

• speciality : this property guarantees that basis vectors have length 1, and uses both the copying map
and its adjoint.

=

A wire is called a Frobenius algebra when it is equipped with a copying map satisfying these properties. Many
other properties follow. Read [HV Definition 5.1, Lemma 5.4, Definition 5.5].

For example, if a wire carries a Frobenius algebra, then it automatically also has cups and caps: read
[HV Theorem 5.15 and Proposition 5.16].

8.2 Spiders

For Frobenius algebras, ‘only connectivity matters’ holds in the extreme: any connected string diagram built
from copying maps and their adjoints using sequential and parallel composition is the same. This property
is also called the spider theorem. Read [HV Section 5.2].

Consequently, we can equivalently define a Frobenius algebra as a family of spiders: a family of ‘gates’
with m inputs and n outputs for any natural numbers m and n, satisfying the spider fusion rule

...

...

...

...

... =
...

...

Colloquially: when two spiders shake legs, they fuse. In particular, this includes wire rules as edge cases:

= =
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8.3 Phases

With only spiders available, we can only make graphical ‘programs’ that correspond semantically to specific
matrices, namely the partial isometries diagonal in the corresponding orthonormal basis. What if we want
to ‘program’ in string diagrams a matrix with other diagonal entries?

That is where phases come in. A phase is a state that interacts in a specific way with the copying map.

α

They correspond to unitary matrices that are diagonal in the orthonormal basis corresponding to the copying
map. Using them we can code string diagrams for diagonal matrices with complex numbers on the unit circle
as entries. This includes for example controlled rotation gates.

Purely abstractly from the string diagrams, phases for a copying map form a group: two phases can be
added (using the adjoint of the copying map). Phases play particularly nice with spiders. We can decorate
a spider with a phase by just writing it inside the dot:

...
...α =

...
...

α

The spider fusion rule then becomes:

...

...

...

...

...

α

β

=
...

...α+ β

Now read [HV 5.5].

8.4 Bits

Armed with spiders, we can now make sense of bits. Whereas arbitrary wires respresent the data type of a
qubit, states of a wire that are copyable by a chosen Frobenius algebra correspond to basis states, and thus
to bits:

ψ =

ψ

ψ

Let’s have a look at our next quantum programming language, where bits are used in an essential way.

8.5 Qiskit

Qiskit is an open source programming language developed by IBM and built on top of the Python
programming language. It integrates with OpenQASM. In fact, Qiskit more accurately refers to a family of
integrated frameworks for quantum computation. The most important of these are:

• Qiskit Terra, a circuit description language with a Python-like syntax and the foundation of the Qiskit
software stack. It also includes tools for the visualisation of circuits and quantum states, and for the
optimisation of circuits for specific hardware devices.
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• Qiskit Aer, which provides facilities for classically simulating those circuits, along with realistic noise
models for those simultations.

Along with classical simulations, Qiskit can also be used to interact with various quantum hardware providers
through the cloud.

Qiskit is provided as a Pypi package for Python. As a result, its syntax follows the rules of Python. For
starters, we import the package as usual:

import qiskit as qs

The core class for describing a quantum circuit in Qiskit is, unsurprisingly, the QuantumCircuit class. Its
constructor takes up to two integer arguments, used to specify the number of quantum and classical registers
(qubits and bits):

qc1 = qs.QuantumCircuit (4) # Construct a QuantumCircuit with 4 qubits

qc2 = qs.QuantumCircuit (4,3) # ... or with 4 qubits and 3 bits

We can then enact gates on the circuit by calling the corresponding methods of the class:

qc1.h(0)

qc1.cx(0,1)

qc1.cx(4,3)

We can then visualise this circuit with qc1.draw():

As you can see, the register of qubits is 0-indexed. Qiskit implements a large number of quantum gates in
this way, see the documentation (or calling help(qs.QuantumCircuit) within Python).

Measurements are a little different: they of course require access to a classical bit to store the outcome
of the measurement.

qc2.h(0)

qc2.cx(0,1)

qc2.cx(4,3)

qc2.measure (2,0)
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We can then compose circuits with matching registers as follows:

qc3 = qs.QuantumCircuit (4)

qc3.cx(2,4)

qc3.cx(1,3)

qc1.compose(qc3).draw()

We can also build a QuantumCircuit whose quantum register is split into named subregisters. To understand
this, we first need to introduce the QuantumRegister class, with an optional name:

qreg1 = qs.QuantumRegister (2," register1 ")

qreg2 = qs.QuantumRegister (2," register2 ")

ClassicalRegister has an analogous syntax for constructing classical registers. Then, we can build a
QuantumCircuit from these registers:

qc3 = qs.QuantumCircuit(qreg1 , qreg2)

qc3.h(0)

qc3.cx(qreg1[0], qreg1 [1])

qc3.cx(qreg2[1], qreg2 [0])

We can also initialise qubits with the following syntax:

qc3 = qc1.copy()

qc3.initialize ([0,1], 2)

The first argument to initialize describes a qubit state as a pair of coefficients in the computational basis.
The second argument describes the target qubit in the circuit for initialisation.

We can then compose circuits with matching registers:

qc4 = qs.QuantumCircuit (4)

qc4.cx(2,3)

qc4.cx(1,3)

qc1.compose(qc4)

Finally, we can output a QuantumCircuit to an OpenQASM string using the qasm method.
Qiskit also makes it possible to interact with various quantum hardware providers, as well as to run a

simulation of a given quantum circuit on a classical backend. This allows one to extract (real or simulated)
output states or outcome probabilites for measurements. The frontend for running circuits on actual quantum
hardware is described in the documentation and depends on the provider in question.

We focus here on the classical simulation backends. These are provided via the qiskit.providers.aer

submodule, specifically the AerSimulator class.

from qiskit.providers.aer import AerSimulator

In order to run the simulation, we need to set a initial state for each qubit. Here is an elementary example:

qc5 = qs.QuantumCircuit (1,0)

qc5.initialize ([1,0],0)

qc5.h(0)

qc5.save_statevector ()

simulator = AerSimulator ()

qobj = qs.assemble(qc5 , shots =1024)

result = simulator.run(qobj). result ()

result.get_statevector ()

with result:

Statevector ([0.70710678+0.j, 0.70710678+0.j], dims =(2 ,))
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We can also get the resulting probabilities for different outcomes of a measurement in the computational
basis:

result.get_counts ()

Putting this all together, we can simulate the output state for one of our circuits for a given input state:

qc6 = qs.QuantumCircuit (4)

qc6.initialize ([1 ,0] ,0)

qc6.initialize ([1 ,0] ,1)

qc6.initialize ([1 ,0] ,2)

qc6.initialize ([1 ,0] ,3)

qc6 = qc6.compose(qc1)

qc6.save_statevector ()

qobj = qs.assemble(qc6)

result = simulator.run(qobj). result () # Do the simulation and return the result

result.get_statevector ()

This returns the result:

Statevector ([0.70710678+0.j, 0.+0.j, 0.+0.j,

0.70710678+0.j, 0.+0.j, 0.+0.j,

0.+0.j, 0.+0.j, 0.+0.j,

0.+0.j, 0.+0.j, 0.+0.j,

0.+0.j, 0.+0.j, 0.+0.j,

0.+0.j],

dims=(2, 2, 2, 2))

If we add measurements to each qubit at the end of the circuit (using the measure_all method), we can
then simulate outcome counts for the measurement. By default, these counts are made over 1024 simulated
runs of the circuit.

qc6.measure_all ()

qobj = qs.assemble(qc6)

result = simulator.run(qobj). result () # Do the simulation and return the result

result.get_counts ()

Although the topic is beyond the scope of this tutorial, one of the main selling points of Qiskit Aer is that
it provides reaslistig noise models for simulating quantum circuits run on NISQ devices.

We can now put everything together to see our running example, the Deutsch-Jozsa algorithm, in Qiskit.
For a complete explanation, see here.

# initialization

import numpy as np

# importing Qiskit

from qiskit import IBMQ , Aer

from qiskit.providers.ibmq import least_busy

from qiskit import QuantumCircuit , assemble , transpile

# import basic plot tools

from qiskit.visualization import plot_histogram

# set the length of the n-bit input string.

n = 3
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const_oracle = QuantumCircuit(n+1)

output = np.random.randint (2)

if output == 1:

const_oracle.x(n)

dj_circuit = QuantumCircuit(n+1, n)

# Apply H-gates

for qubit in range(n):

dj_circuit.h(qubit)

# Put qubit in state |->

dj_circuit.x(n)

dj_circuit.h(n)

dj_circuit = QuantumCircuit(n+1, n)

# Apply H-gates

for qubit in range(n):

dj_circuit.h(qubit)

# Put qubit in state |->

dj_circuit.x(n)

dj_circuit.h(n)

# Add oracle

dj_circuit += balanced_oracle

# Repeat H-gates

for qubit in range(n):

dj_circuit.h(qubit)

dj_circuit.barrier ()

# Measure

for i in range(n):

dj_circuit.measure(i, i)

# Display circuit

dj_circuit.draw()
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A range of Jupyter notebooks are also provided which give further examples of quantum computation in the
language.
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9 Complementarity

With only one spider available, we can only draw string diagrams corresponding to some special matrices,
namely those that interact well with the corresponding orthonormal basis. Part of the source of the power
of quantum computing is that you can swap between two orthonormal bases (with things like the Hadamard
gate and the Quantum Fourier Transform).

So let’s have two bases, that is, two spiders. To differentiate them, they are typically with different
colours: red and green, white and black, or sometimes others. Spiders of one colour still behave as before.
But are there any rules that govern when spiders of different colours meet?

It turns out to be most advantagous to not just have any spiders, but to pick spiders that correspond
to orthonormal bases that are mutually unbiased. This means that the bases are, in a sense, maximally
incompatible: creating a state in the one basis and then measuring it in the other basis gives absolutely no
information. This property of complementarity can be expressed purely graphically!

This is nearly the last part of the puzzle we will need for our graphical programming language. Using just
two complementary spiders we can write programs for the CX gate, the CCX gate, and the H gate, which are
known to be universal. In other words, you can write any quantum computation you want in string diagrams
now.

Read [HV 6.1, 6.2]. (Bonus: if you’re interested in why the complementarity law is in a sense the only
choice, read [HV 6.3].)
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10 ZX calculus

We have now introduced all the ingredients we need for the graphical programming language of the ZX
calculus: wires, scalars, and two colour spiders spiders. We summarise below. Read [KW 3.1, 3.2] (and [KW
3.3] if you feel like more) for more details.

10.1 Rules

There are two types of rules following which we may manipulate diagrams. First, the graphical rules that
we already talked about above. We may deform a diagram in any way we like, as long as the connectivity is
respected. The second type of rule pertains to the basic building blocks. These rules govern how you may
combine several building blocks. There are quite a few of them, and we will now simply list them. We can
think of these rules as program transformations.

Monoid rules

= = = =

= = = =

Frobenius rules

= =

Fusion rules
α

β

= α+ β

α

β

= α+ β

Identity rules For the following rules we first introduce a bit of shorthand notation:

α =

α

α =

α

H =
π
2

π
2

π
2

The identity rules now say:

= = =
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Colour change rule

= H

H

H

Copy rule

=

π-Copy rule

απ = α

π

π

Bialgebra rule

=

Scalars rule
α β =

This rule says that we will ignore global scalar factors. It is more of a convenience, and we could have
dropped this rule for the price of carefully inserting scalars into all the other rules.

10.2 Soundness

The bialgebra rule says that these two orthonormal bases corresponding to the white and black spiders are
at a maximal angle to one another, or complementary. The copy and π-copy rules are happy coincidences
that hold for these two complementary bases. The standard model interprets a diagram of the ZX-calculus
as an actual matrix in a way that respects the rules:

t |

=

(
1 0
0 1

)
t |

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


r z

=


1
0
0
1


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r z
=
(
1 0 0 1

)
t

H

|

=

(
1 1
1 −1

)
t

α

|

=

(
1
eiα

)
t

α

|

=

(
1 0 0 0
0 0 0 eiα

)
t

α

|

=

(
1 + eiα

1− eiα

)
t

α

|

=

(
1 + eiα 1− eiα 1− eiα 1 + eiα

1− eiα 1 + eiα 1 + eiα 1− eiα

)
t f

g

|

= JfK ⊗ JgK

t
f g

|

= JgK ◦ JfK

All the rules remain valid under this standard interpretation. (Try it out!) In other words, this standard
interpretation is sound : any graphical manipulations done with ZX diagrams yield valid equalities between
matrices under the standard interpretation.

Theorem 10.1 (ZX calculus is sound). Let D1, D2 be diagrams in the ZX calculus. If D1 equals D2 under
the axioms of the ZX calculus, then JD1K = JD2K.

10.3 Completeness

The ZX calculus captures the essence of quantum computation and is very efficient at it.
First, any possible linear transformation from m qubits to n qubits can be approximated up to arbitrary

precision with ZX diagrams. In other words, the ZX calculus is approximately universal.

Theorem 10.2 (ZX calculus is approximately universal). For any 2m-by-2n matrix f , and any error margin
ε > 0, there exists a diagram D in the ZX calculus, that only includes phases that are integer multiples of π4 ,
such that ∥ JDK − f∥ < ε.

Second, the ZX calculus is complete. That is, if two matrices are equal, and are both given by some ZX
calculus diagrams, is there always a graphical proof of this using only the axioms of the ZX calculus? This is
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the case if we assume the following further two axioms (that are sound under the standard interpretation):

πφ ψ

φ θ ψ

−θ

=
π φψ

φ−θψ

θ

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=

π
2

π
4

π
4 π π

4

π

π
4

for any phases φ,ψ, θ that are multiples of π4 . Let’s call the ZX calculus with these two extra rules the π
4 -ZX

calculus.

Theorem 10.3 (ZX calculus is complete). Let D1, D2 be diagrams in the π
4 -ZX calculus. If JD1K = JD2K,

then D1 = D2 under the axioms of the π
4 -ZX calculus.

10.4 PyZX

The ZX calculus is very amenable to automation. All a ZX calculation really is, is a bunch of finite labelled
graphs, and a sequence of one of finitely many rules. Computers can handle this very well, and in fact search
for such proofs for us themselves. The general problem of deciding whether two ZX diagrams implement the
same unitary matrix, however, is hard (in a complexity-theoretic sense).

There are various software packages to handle ZX diagram rewriting with various degrees of efficiency,
including Haskell and Java-based Quantomatic, Python-based PyZX, Rust-based QuiZX, and online ZXLive.

10.5 Quantum circuits

We will see in later lectures that you can translate quantum circuits into ZX diagrams and then optimise
those ZX diagrams quickly. In fact, this leads to state of the art quantum circuit optimisation techniques.
However, not all ZX diagrams correspond to circuits, and diagram rewriting may turn a circuit diagram into
a non-circuit diagram. This is a consequence of the fact that the ZX calculus can express not just unitary
matrices, but in fact all matrices.
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11 Classical quantum circuits

Whereas general ZX diagrams are hard (in a complexity-theoretic sense) to rewrite algorithmically, special
classes of ZX diagrams are much easier.

11.1 CNOT circuits and reversible computing

For example, quantum circuits made up of only CX gates are much easier to reason about (than arbitrary
quantum circuits). This is because they can be represented much more efficiently than by an arbitrary 2n-
by-2n matrix with entries in the complex numbers, namely by a 2n-by-2n matrix with entries in {0, 1}. This
means we can do linear algebra over the field Z/2Z with 2 elements, which comes down to parity checking.
Read [KW 4.1] for the details.

Another way to think about this is to consider computations that are classical, but reversible. Here,
by classical, we mean that input states drawn from the computational basis always lead to outputs in the
computational basis, and not superpositions of them. By reversible, we mean that the outputs can be derived
from the inputs (duh), but also the inputs can be derived from the outputs. In a sense, the whole computation
can be run in reverse. Notice that this is the case for CX:

|00⟩ 7→ |00⟩
|01⟩ 7→ |01⟩
|10⟩ 7→ |11⟩
|11⟩ 7→ |10⟩

This model of computation is interesting for classical computer science too, because of the following
reasons. By Landauer’s principle, deleting the information of a bit takes work (in the thermodynamic sense
of increasing entropy and disspating energy or heat), as does copying a bit. Therefore, if we built a computer
that only runs reversible computations, by never copying or deleting bits, it would take much less energy to
run (and therefore be faster).

But is it feasible to do only reversible computations? Yes, it is! Any function f : {0, 1}n {0, 1}n on
n-bit strings can be turned into a reversible one by Bennett’s trick

{0, 1}n × {0, 1}n {0, 1}n × {0, 1}n

(x, y) 7→ (x, y ⊕ f(x)),

where ⊕ denotes the XOR of two bits. This is also called reversiblising the function. The price to pay is that
you need twice the memory. We will need this in a later lecture to handle oracular quantum algorithms.

In fact, the situation with CX above is typical. The CCX gate, also called the Toffoli gate, is known to
be universal for classical reversible computing: any permutation between sets of size 2n can be implemented
by a circuit of Toffoli gates.

(Categorically, CNOT circuits thus correspond to the category of finite sets and bijections, whereas general
quantum circuits correspond to the category of finite-dimensional Hilbert spaces and unitary matrices. From
this perspective it is not surprising that you can handle the former algorithmically much easier than the
latter.)

(You can base good programming languages on this idea. Start with classical reversible computing Pi,
and add some constructs to upgrade it to quantum computing. Options include adding the Hadamard gate,
adding square roots, or adding two copies of the basic reversible classical programming language and make
them interact in a complementary way. Three these options led to the languages HadamardPi, SqrtPi, and
QuantumPi. All three are sound, complete, and universal. Moreover, their rules are fully equational, unlike
the ZX calculus, which either has uncountably many scalars, or rules like Euler decomposition that involve
quantifiers. This means you can truly automate them. Moreover, the few rules make physical sense, unlike
some of the ZX calculus rules which seem arbitrary. Finally, these languages by design cannot describe

34



non-unitary matrices, unlike ZX diagrams; any program you write down in them is in fact a valid physical
computation, and universality says that vice versa any unitary matrix you can in fact implement. This is
state of the art research, but if we have time towards the end of the course, and/or if you ask nicely, we can
have a look at them!)

11.2 Phase-free ZX-diagrams

A similarly restricted class of ZX-diagrams that are pleasant to work with algorithmically are phase-free ones:
those that have no Hadamard gates and that only allow phases 0.

There is an efficient algorithm to bring such diagrams into a normal form. Hence you can efficiently check
whether two graphical programs in this form implement the same computation. Also, there is an efficient
algorithm that turns a phase-free ZX diagram into a quantum circuit.

Read [KW 4.2].
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12 Measurement

We have been cagey about measurement so far by using postselection. Today we look at a quantum
programming language that really needs mid-circuit measurements: Q#. We will still remain a bit cagey about
measurement, but will try to convince you that you can deal with it gracefully in a graphical programming
language, and in practice keep using the mongrel method of sums of diagrams instead. First, read [KW
2.6.1].

To get a taste for how to deal with measurement fully graphically, read [HV 7.1 and 7.2] (but skip the bits
about categories and only look at the bits about graphical diagrams).1 Basically, we have to distinguish two
types of wires: fat ones to represent quantum data, and thin ones to represent classical data. A spider from
a fat wire to a thin one now represents measurement. (And a spider from a thin wire to a fat one represents
conditional state preparation.) This way we can have both classical and quantum data types in our language,
where classical data can be copied and deleted but quantum data cannot, and in fact use classical data for
control flow. For example, this way we can ‘program’ measurement-based quantum computation graphically,
where the rest of the program depends in a crucial way on the outcome of a measurement made halfway its
execution.

12.1 Q#

Q# is a domain-specific programming language (DSL), aimed at writing quantum algorithms without having
to worry about implementation details such as the physical layout of a quantum computer. The Q# language
was developed by Microsoft, and is part of their wider Quantum Development Kit, which includes:

• Q# libraries implementing several standard quantum operations and algorithms.

• Integration with classical programming languages such as Python, C#, and F#, through Microsoft’s
Dot.net framework.

• Ways to run your Q# programs on different targets, such as simulators, resource estimators, or actual
quantum hardware using Microsoft’s Azure Quantum programme. There is an orchestration language
in which you can specify to run the Q# program on a simulator a number of times, and once on
quantum hardware, for example.

These last two points make Q# an interesting mix between an imperative and functional programming
language: Q# itself is imperative, but it can be used in a functional way. It is also not (necessarily) a circuit
description language, as quantum instructions are dispatched in order, and you can use measurement results
as classical data in the continuation of your program.

The easiest way to use Q# is through Microsoft’s Integrated Development Environment called Visual
Studio Code, following the installation instructions. There is official documentation that is quite
comprehensive. The following survey will be much briefer.

Q# is an imperative language. Functions, called operations, take in variables, and may return values.
For example, here is an operation that creates |±⟩ states:

operation PlusMinus(b : Bool) : Qubit {

use q = Qubit ();

if b { X(q); }

H(q);

return q;

}

1If you really want to know you can also look at:

• B. Coecke and S. Gogioso, “Quantum in Pictures”, 2023.

• B. Coecke and A. Kissinger, “Picturing Quantum Processes”, Cambridge University Press, 2017, Chapter 8.
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The first line says that the input is a Boolean value, and the output is a Qubit. The second line introduces a
variable q, that is initialised to be of type Qubit, standardly to the value |0⟩. If the input Boolean was true,
an X gate is applied to turn q into |1⟩. Then, H applies a Hadamard gate, and finally, the qubit is returned.

Apart from Hadamard, you can have CX gates, with CNOT, which takes two Qubits. In fact, CNOT will
accept a list of qubits to target, and a qubit to control them with, like so:

operation Oracle(cs : Qubit[], t : Qubit) : Unit is Adj {

for c in cs {

CNOT(c, t);

}

}

Here, Unit is a type that says that this operation does not return a value (like void in C). The annotation
is Adj indicates that this operation implements a unitary transformation and has an adjoint specialisation.
(There is also an annotation is Ctl indicating that the operation has a controlled specialisation, and is

Adj+Ctl to say it has both.)
Here is an operation that implements α |0⟩+ β |1⟩ 7→ α |00⟩+ β |11⟩:

operation Share(a : Qubit) : (Qubit , Qubit) {

use b = Qubit ();

CNOT(b,a);

return (a,b);

}

To measure, there is an operation M that takes a Qubit and has output type Result. A variable of type
Result can only have two values: Zero and One.

operation GenerateRandomBit () : Result {

use q = Qubit ();

H(q);

return M(q);

}

Measurement using M automatically discard the qubit. When you no longer need an unmeasured Qubit, you
need to Reset it. The compiler will complain if you have not discarded all qubits in use by the end of the
program.

There are other types than Qubit and Result, such as Bool, Int, Double, and String, and you can build
custom data types on those basic ones such as arrays.

Deutsch-Jozsa

To execute a Q# program takes some syntax. Here is a full implementation of the Deutsch-Jozsa algorithm,
using the operation Oracle above:

namespace DeutschJozsa {

open Microsoft.Quantum.Canon;

open Microsoft.Quantum.Intrinsic;

open Microsoft.Quantum.Measurement;

operation DeutschJozsa(n:Int , oracle :(( Qubit[], Qubit)=>Unit)) : Bool {

mutable isFunctionConstant = true;

use (qn , q2) = (Qubit[n], Qubit ());

X(q2);

ApplyToEachA(H, qn);
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H(q2);

oracle(qn , q2);

ApplyToEachA(H, qn);

if (MeasureAllZ(qn) != Zero) {

set isFunctionConstant = false;

}

ResetAll(qn);

Reset(q2);

return isFunctionConstant;

}

@EntryPoint ()

operation Main() : Bool {

Message($"The operation Oracle is ");

mutable b = DeutschJozsa (1,Oracle );

if (b) {

Message($"balanced .");
} else {

Message($"constant .");
}

return b;

}

As you can see, a very nice feature of the Q# framework is that you can continue to compute using the result
of a measurement as if nothing happened. This happens in Main above, where a Result type is coerced into
Bool so the conditional if can act on it.

There are several advanced libraries and features to explore. For example:

open Microsoft.Quantum.Diagnostics;

provides an operation called DumpMachine, which will output the (simulated) current state of the computation.
For example, if a qubit is initialised in state |0⟩, DumpMachine will say so:

|0>: 1.000000 + 0.000000 i == ******************** [ 1.000000 ]

|1>: 0.000000 + 0.000000 i == [ 0.000000 ]
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13 Clifford circuits

Phase-free ZX diagrams make for boring quantum programs. Let’s allow a few more phases. If multiples of
π/2 are allowed, you can get all Clifford circuits: those quantum circuits built from CX and H gates together
with the gate

S =

(
1 0
0 i

)
.

These diagrams can still be brought under efficient algorithmic control. Read [KW 5.1, 5.2, 5.3].
Again, this is perhaps not surprising, because Clifford circuit can be simulated efficiently on a classical

computer by the Gottesman-Knill theorem. In other words, there is no quantum advantage yet if you stick
to Clifford circuits only. Somehow there is a phase transition if you go from phases being multiples of π/2
to multiples of π/4, which we saw can approximate all quantum circuits. Nevertheless, it’s cool that all of
this can be done purely graphically. (Bonus: read [KW 5.4] if you want to more about how to prove the
Gottesman-Knill theorem using ZX methods only.)
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14 Circuit optimisation

Alright, let’s drop all the guard rails now, and consider arbitrary quantum circuits, or equivalently, arbitrary
ZX diagrams. Although there are no known efficient algorithms anymore, there are still various useful ways
the structure of ZX diagrams can be analysed.

First, there are phase gadgets, which can capture the algebraic phase polynomials graphically, govern
CX+phase quantum circuits. They can be phrased in ZX calculus, and there are easy rules about how they
combine, that can drastically simplify CX+phase quantum circuits. Read [KW 7.1].

Second, ZX calculus gives state of the art quantum circuit optimisation methods. We already saw how to
turn a quantum circuit into a ZX diagram. Then, you can simplify the ZX diagram, for example via a path
sum. Finally, you somehow need to turn the diagram back into a quantum circuit. This is the difficult part;
it’s called quantum circuit synthesis. But it can be done! Read [KW 7.2] to see how.

(Bonus: read [KW 7.6] if you want to learn more about optimisation not of quantum circuits but of
arbitrary ZX diagrams.)
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15 Quantum simulation

Phase gadgets have a more versatile cousin called Pauli gadgets. These give a way to regard quantum
computations other than a circuit of logic gates, and can still be compiled in a structured way. Read [KW
7.3 and 7.4].

Other than computation, one of the most promising applications of quantum computers is quantum
simulation. This is the situation where a, say, chemist, brings you a Hamiltonian and an initial state, and
asks you about the final state after letting the system evolve for a specified duration. This question can be
answered (approximately) using Pauli gadgets. Read [KW 7.5].
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16 Oracles

Our example algorithm, Deutsch-Jozsa, solves a typical promise problem. The input (namely, functions
{0, 1}n {0, 1}) is not completely unrestricted, but you’re promised that it will take a certain form (namely,
only constant and balanced functions are allowed). It does this by using the input function as an oracle. The
figure of merit is how often the oracle is consulted during the computation.

But where do you find an oracle in the first place? If it is to be used in a quantum circuit, it had
better be a unitary gate. So first you have to turn the function f : {0, 1}n {0, 1} into a reversible function
using Bennett’s trick (that we saw in Lecture 11), and then turn that into a permutation matrix (which is
automatically unitary).

Can you recognise which unitary gates arise this way as oracles for classical functions? Yes you can! Even
purely graphically. Read [HV 6.2]. (Bonus: check [KW 3.3.4] for a concrete way to build oracles.)

16.1 Higher order functions

How should oracles be modelled in a quantum programming language? Ideally, we’d like for example the
Deutsch-Jozsa algorithm as a piece of syntax that can take the oracle as an input rather than having the
oracle hardwired in the code. This feature is called supporting higher-order functions: functions are able to
take (other) functions as input, and return functions as output.

Semantically, this can be achieved using map-state duality (see Lecture 5.3). But it poses some questions
about the programming language’s type system. The no-cloning theorem means that quantum types need to
be linear, in the sense that you have to use a variable of such a type exactly once: you cannot neglect to use
it, and you cannot use it twice. In particular, the type system has to make sure that higher-order functions,
that are passed along, are only called exactly once. (Categorically, this means you need exponential objects:
your category needs to be monoidal closed.)

16.2 Quipper

Quipper is a quantum circuit description language. It is functional in nature, so when writing Quipper
programs you can think in terms of gates being applied in real time to qubit variables, just as you would for
a classical functional program.

Quipper is implemented as a domain-specific language within the functional programming language
Haskell. Quipper was developed at Dalhousie University by Peter Selinger, and remains open source. Its
original goal was to to accurately estimate and reduce the computational resources required to implement
quantum algorithms on a realistic quantum computer. It comes with a standard library implementation of
7 nontrivial reference quantum algorithms; compiling them into quantum circuits tells you how many qubits
are needed exactly.

Our brief survey will roughly follow the article An Introduction to Quantum Programming in Quipper.
For much more information, see the homepage and the official documentation. Warning: Quipper is not easy
to install.

Circuit model

Quipper can express circuits that allow both quantum and classical wires and operations in the same circuit.
Quantum operations can be controlled by a classical wire, but not the other way around. An explicit
measurement operation turns a quantum wire into a classical wire.

Quipper’s circuit model also has scope: some (ancilla) wires are only used in part of a circuit, and may
be explicitly initialised and terminated part-way the circuit.

There are three distinct phases of execution:

• Compile time: when Quipper syntax is translated into an executable classical program.
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• Circuit generation time: when the resulting classical program generated a quantum circuit. Inputs
whose value is known at this stage are called parameters. For example, the Deutsch-Jozsa algorithm is
really a family of circuits, one for each natural number n.

• Circuit execution time: when the resulting quantum circuit is executed on (simulated) quantum
hardware. Inputs whose value are only known at this stage are called inputs. For example, the inputs
to Deutsch-Jozsa on n qubits are n input qubits.

To keep the different kinds of input separate, Quipper uses three basic types for bits and qubits.

• Bits: have type Bool at circuit generation time, and have type Bit as a classical Boolean input to a
circuit.

• Qubits: have type Qubit and are only available as inputs at circuit execution time.

• Bool can be converted into Bit, but not the other way around. Because measurements can only occur
at circuit execution time, their outcome is a Bit, not a Bool.

Quipper is lazy. That is, when it evaluates a circuit-producing function, that circuit is produced on the fly.
That is useful for very large circuits, which therefore don’t need to be stored in memory all at once. Circuits
can also be consumed lazily.

Embedded language

Quipper is implemented as an embedded language within the host language Haskell, and the quipper
compiler is really a wraparound for the Haskell compiler. Hence, Quipper really is a collection of data
types, combinators, and functions within Haskell. However, not every Haskell program is a good Quipper
program, and there is a preferred style of writing Quipper programs. If you don’t adhere to that style, there
is no guarantee that Quipper acts as expected. Because of this more or less mandated programming style,
you can also think of Quipper as a language in its own right, without thinking about Haskell.

Primitive operations

Here is a very simple Quipper function:

plus_minus :: Bool -> Circ Qubit

plus_minus b = do

q <- qinit b

r <- hadamard q

return r

The first line is the type of the function. You could in fact leave it out, and the Quipper compiler will infer
it. But for now it’s useful to see that the input to the function is a boolean parameter. The output type
Circ Qubit says that the function results in a circuit that returns a single qubit. The body of the function
uses three operations, that are evaluated in the given order. First, a variable q of type Qubit is initialised
with value b. Here, False corresponds to |0⟩ and True corresponds to |1⟩. Then, a hadamard operator is
applied to the qubit, resulting in a new qubit r. Finally, r is returned as the output of the whole function.

You could evaluate this function as follows:

import Quipper

main = print_simple PDF (plus_minus False)

To obtain the following circuit as a PDF file:
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Apart from the built-in function hadamard, you also have qnot for the X gate, and the infix operator
’controlled’, that turns any operation into a controlled one. This code:

share :: Qubit -> Circ (Qubit , Qubit)

share a = do

b <- qinit False

b <- qnot b ’controlled ’ a

return (a,b)

gives a 2-qubit circuit, where the second qubit is initialised |0⟩, and a single CNOT gate is applied, that is,
a circuit for the function α |0⟩+ β |1⟩ 7→ α |00⟩+ β |11⟩.

To measure a qubit, there is a function measure:

measurement :: Qubit -> Circ Bit

measurement q = do

x <- measure q

return x

If you no longer need a measurement result, or any other Bit, you can discard it:

cdiscard x

Deutsch-Jozsa

The Deutsch-Jozsa algorithm can now be written in Quipper as follows:

deutschjozsa :: (Qubit -> Qubit -> Qubit -> Circ (Qubit , Qubit , Qubit))

-> Circ (Bit , Bit)

deutschjozsa (oracle) = do

x <- qinit False

y <- qinit False

z <- qinit True

hadamard x

hadamard y

hadamard z

(x,y,z) <- oracle x y z

hadamard x

hadamard y

(a,b) <- measure (x,y)

return (a,b)

Here, oracle is a function of type Qubit -> Qubit -> Qubit -> Circ (Qubit, Qubit, Qubit); a circuit
that turns 3 input qubits into 3 output qubits. Unlike in OpenQASM, we can feed the Quipper version of
deutschjozsa any such function we like. It could be, as in Lecture 3:

oracle x y z = do

qnot_at z ‘controlled ‘ [x, y]

return (x,y,z)

But it could also be any other function oracle of the right type.

Advanced mechanisms

Let us briefly touch on some of the more advanced mechanisms that Quipper offers.
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Quantum data types From the basic data types Bit and Qubit, you can build up more complicated
data types, using tuples and lists. For example: (Qubit,[Qubit]) is a type whose elements are pairs of
a qubit and a list of qubits. Every quantum data types has an associated classical data type, in this case
(Bit,[Bit]), and an associated boolean data type, in this case (Bool,[Bool]).

Generic functions The power of functional programming in Quipper comes to the fore with generic
functions. We already saw measure, cdiscard, and print_simple. These are functions that can accept
inputs of many different types. We won’t go into detail here, but for an example, here is a generic version of
the plus_minus function above:

plus_minus_generic a = do

qs <- qinit a

qs <- mapUnitary hadamard qs

return qs

This function does not just apply to Bool, but can also produce, for example, a circuit of type
(Qubit,[Qubit]) out of (Bool,[Bool]).

Recursion In Quipper you can write circuit-producing functions that are recursive over any parameters
known at circuit generation time. So, for example, you can recurse over a list of qubits. For a nice
recursive implementation of the Quantum Fourier Transform, see An Introduction to Quantum Programming
in Quipper.

Circuit operations You can also write functions that take a circuit, say of type Circ [Qubit], and make
new circuits based on it. For example, repeating a circuit a number of times, or reversing a circuit, or use a
given circuit as a subcircuit in a larger circuit.

Finally, any classical reversible function can be turned into a circuit automatically by Quipper. Write a
function such as

reversiblefunction :: (Bool , Bool , Bool) -> (Bool , Bool , Bool)

reversiblefunction x y z = y z x

and then turn it into a circuit by using the operation build_circuit just before:

build_circuit

reversiblefunction :: (Bool , Bool , Bool) -> (Bool , Bool , Bool)

reversiblefunction x y z = y z x

Semantics Quipper is one of few quantum programming languages with well-founded semantics. Haskell
is well-studied academically, and many of its mathematical models extend to Quipper. For example, the
crucial Circ construction is in fact a monad. However, some aspects of Quipper that would be useful for a
quantum programming language are not well reflected in Haskell:

• Dependent types: Haskell has no mechanism to recognise that a parameter of type Bool is available at
circuit generation time, but a Bit is only used at circuit execution time.

• Linear types: qubits cannot be copied or deleted, but terms of any Haskell type can.

There is a family of descendants of Quipper, called Proto-Quipper, that aim to make Quipper a standalone
language and semantics to remedy these issues.
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17 Advanced topics

Finally, depending on time and demand, let’s discuss some advanced topics.

17.1 Uncomputation

Almost every quantum computation uses auxiliary qubits, that are not part of the input or output, but only
store some temporary information. After they are no longer useful, they can be discarded. The easiest way
to do this is by measuring them. That way, you can reuse your precious qubits. Over the course of a larger
quantum program, such resource reuse can make a big difference.

But you have to be careful, as this can mess up the rest of your computation!

|0⟩

0 1 2 3

In the quantum circuit above, the top qubit is only used as a control, and hence you may expect the output
to equal the input. But the mere fact that the auxiliary qubit is initialised, interacts with the data qubit,
and is discarded changes this expected behaviour. Suppose that the input at step 0 is |+⟩ = 1√

2
(|0⟩ + |1⟩).

This evolves to 1√
2
(|00⟩ + |10⟩) at step 1, and to 1√

2
(|00⟩ + |11⟩) at step 2. But after the measurement, at

step 3, the output is |0⟩ with probability 1
2 , and |1⟩ with probability 1

2 . This behaviour occured because
the auxiliary qubit was discarded while it was in a dirty state, that is, it was not guaranteed to be in the
same state it was initialised in. To prevent this behaviour, the auxiliary qubit needs to be cleaned before
discarding it. We can do this by inserting an uncomputation before discarding:

|0⟩ ⟨0|

0 1 2 3 4

The inserted circuit between steps 2 and 3 uncomputes everything that happened to the auxiliary qubit,
guaranteeing that it is measured in the same state it was initialised in, and therefore has no effect on the rest
of the computation. Indeed, if the input state at step 0 is |+⟩, then at step 3 the state is now 1√

2
(|00⟩+ |10⟩),

and so the output at step 4 is again |+⟩, as expected.
You could leave inserting uncomputations to the programmer, much like in a language like C the

programmer is responsible for memory management. But it would be much nicer if the compiler could
take care of this automatically, much like garbage collection in languages like Java. This is not an easy
problem, however: uncomputations could be correctly be inserted in several ways and in several places, and
optimising this is a hard (in the sense of complexity theory problem).

17.2 Silq

SILQ is a high-level quantum programming language developed by researchers at ETH Zurich. While it bears
some similarity to Q#, it has a number of features that sets it apart, such as:

• a sophisticated type system with, among other things, type-level distinction between classical and
quantum types (using !), classical and quantum subroutines (using the qfree annotation), and quantum
subroutines with and without measurement (using the mfree annotation);

• automatic uncomputation of subroutines, preventing accidental measurement when variables leave
scope.

46



• SILQ programs also support using various unicode symbols, though they all have ASCII alternatives
and so are not strictly necessary. In this tutorial, we will avoid their use.

SILQ programs operate much like Q# programs in that they are allowed to mix classical and quantum
computations, perform measurements at arbitrary places and branch on the result, and so forth. Unlike
circuits, which are run directly on a quantum computer, we can think of SILQ programs instead as
programs running on a classical computer controlling a quantum computer: this classical computer is able
to continuously send quantum instructions, as well as the initial classical data to perform these on, to the
quantum computer, and receive measurements back once the instructions have been executed. This is known
as the QRAM model of quantum computation.

SILQ is most easily installed as a Visual Studio Code plugin, as described in the installation instructions,
though brave souls can also install it from source.

Like most other programming languages, a SILQ program consists of a number of function definitions. A
SILQ program is runnable if it contains a main function. The simplest possible SILQ program is something
like

def main() {

return false;

}

To run this program in Visual Studio Code, save it and press F5 (it should return 0).
SILQ supports a number of types and annotations to aid in programming. The simplest types are the

primitive types such as B (Booleans), N (natural numbers), Z (integers), int[n] and uint[n] (n-bit signed
and unsigned integers), and so on.

Given some types s and t, we can also form complex types such as s -> t (functions taking inputs of
type s and producing outputs of type t), s[] (lists of elements of type s), s^n (for some natural number n;
n-ary tuples of type s), and !s (the type s restricted to classical values).

While most of these should be self-explanatory, the classical types !t require some further exposition. A
value of type !t is a value of type t which is guaranteed to be classical, i.e., not in a superposition of states.
Distinguishing between classical and quantum values is useful, since we can do more with classical values
than quantum ones. For example, classical values can be thrown away and duplicated, but quantum ones
cannot, e.g., the function

def discard (n : !N) {

return true;

}

is well-typed (since it is defined only on classical natural numbers), while the function

def discardQuantum (n : N) {

return true;

}

is not (as it would try to discard arbitrary quantum natural numbers, which is not possible without first
measuring). The type of the built-in measurement function measure also reflects this distinction between
classical and quantum values, in that it has type t -> !t (for every type t).

It can also be useful to distinguish between functions that measure (parts of) their input, and functions
which do not. A function that does not measure any (parts of) its arguments can be annotated with the
mfree annotation, and so will not just have type s -> t but in fact s -> mfree t. Requiring that an
argument function has an mfree-type can be used to ensure that a superposed quantum state can be safely
handed off to this function without worry that the state is destroyed by a potential measurement.

A similar annotation is the qfree annotation: a function of type s -> qfree t is not just a function
from s to t, but one which neither introduces nor eliminates superpositions. In other words, a qfree function
is a classical function which can be applied to a quantum state without worry of introducing or eliminating

47

https://silq.ethz.ch/install
https://github.com/eth-sri/silq


terms in a superposed state. This is very useful for describing oracles, as these are entirely classical functions
(and, indeed, these algorithms only function correctly when they are).

A final very useful type-level feature of SILQ is generic parameters. A generic parameter is a classical value
known at compile-time, on which a function definition may depend. This can be useful for defining families
of functions which are flexible in that they can be defined generically for one or more external parameters.
For example, one would expect an algorithm for adding n-qubit quantum integers to work the same for any
choice of n, and so such an algorithm should be generic in n. Generic parameters generalise the uniform
families found in Quipper. While normal arguments are given in parentheses, generic parameters are given
in square brackets. For example, the function

def bitwise_not [n:!N] (bits : B^n) qfree {

for i in [0..n) {

bits[i] := X(bits[i]);

}

return bits;

}

takes a generic parameter n of type !N (classical natural numbers), and can be applied to a vector of Booleans
of any length (since the input argument bits is of type B^n, which depends on the generic parameter n).
Whatever the value of the n is, this function loops through the vector and applies the X gate to each
entry. This allows us to apply this same function to vectors of different length, e.g., with the definition of
bitwise_not above,

def main() {

xs := bitwise_not(false , false , true);

ys := bitwise_not(true , true);

return (xs ,ys);

}

is not only well-typed, it also returns ((1,1,0),(0,0)) when run as expected.
Note also that bitwise_not can be given the qfree annotation since all it ever does is apply X to each

qubit in the vector, and X neither introduces nor eliminates superpositions. If we were to change this to
apply an arbitrary function B -> B to each entry in the vector, e.g.,

def bitwise_map [n:!N] (bits : B^n, f : !(B -> B)) {

for i in [0..n) {

bits[i] := f(bits[i]);

}

return bits;

}

we would have to give up the qfree annotation, as we can not guarantee that f does not introduce or
eliminate superpositions. For example,

def main() {

xs := bitwise_map ((false , true), H);

return xs;

}

is well-typed (H is the built-in Hadamard gate), and running it returns the state 1
2 (|00⟩+ |10⟩ − |01⟩ − |11⟩),

showing that the SILQ type system was justified in refusing to award bitwise_map the qfree annotation.
More information about SILQ (including a complete list of types, annotations, and other features) can

be found in the official documentation.
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Deutsch-Jozsa

def DeutschJozsa[n:!N]( const f : B^n -> B^n) {

// Initialise values.

state := (0 : int[n]) as B^n;

state[n] := X(state[n]);

// Apply Hadamards.

state := bitwise_map(state , H);

// Apply oracle.

state := f(state);

// Apply Hadamards again.

state := bitwise_map(state , H);

state[n] := H(state[n]);

// Measure and return result.

return measure(state) == ((0 : int[n]) as B^n);

}

This function returns false if the given function is constant and true if it is balanced.

17.3 Pi

Depending on time, we can discuss a satisfying series of quantum programming languages based on the
universal programming language for classical reversible computing, Pi, such as HadamardPi, SqrtPi, and
QuantumPi.

17.4 Quantum Programming Zoo

There are many more quantum programming platforms than we discussed here. For example, you may be
interested in Qurts, which has a Rust-style type system to deal with automatic uncomputation, or Qwire,
which aims to certify circuits with correctness proofs rather than efficient compilation.

More generally, have a look at the Quantum Programming Zoo. Happy quantum programming!
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