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Abstract

The game of chess is a hugely popular two-player perfect-information game, thematically
featuring tactics and strategy. Academia and the industry have consequently developed
strong chess engines over decades which feature many hundreds of techniques and meth-
ods, yet a comprehensive literature survey of chess programming techniques does not exist.
Combating this, we present a systematic literature survey in tree algorithms for computer
chess programs. We discuss traditional Minimax-based approaches which have seen steady
development since 1970, as well as novel state-of-the-art approaches employing Monte-Carlo
Tree Search. We conclude that a dominant approach is not yet apparent, and suggest further
research in MCTS–Minimax hybrids and other mixed-technique approaches.
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1 Introduction

Chess has been an academic and industry interest for at least several decades and is recently
becoming an increasingly popular. Many millions of players play it regularly and top-players use
computer chess programs to gain insight and competitive advantages. However, few academic
literature surveys exist, and none are recent. This paper presents the state of the art in chess
program design in a systematic survey covering both traditional and newer Monte-Carlo Tree
Search (MCTS) approaches.

Chess is a massively popular two-player zero-sum perfect-information game demanding strategy,
tactics, and board evaluation. World chess federation Fédération Internationale des Échecs
(FIDE) estimates there are more than 605 million regular chess players in the world,1 of which
360,000 are tournament players,2 and 1700 are expert-level grandmasters.3 Moreover, online
chess is becoming increasingly popular. Driven by the Coronaviris pandemic and popular Netflix
series The Queen’s Gambit, online platform Chess.com has seen the number of live chess players
increase 160 percent,4 and online chess video streaming hit records of almost one million unique
viewers.5

Historicaly, chess is often celebrated as the grandfather of modern artificial intelligence. In early
1948, computer pioneers such as Alan Turing proposed the first chess programs, and computer
chess since has remained an interest for scientists and engineers [1]. In 1966, Velski et al. used a
M-20 computer to perform the first match between a human and a computer [2], which was won
by the human. Subsequent decades have seen a variety of chess programs emerge and a strong
effort towards improving the playing strength of chess programs, and in 1997 IBM’s computer
Deep Blue defeated reigning world champion Garry Kasparov [3]. Since then, no human chess
player has seriously challenged chess engines.

Chess engines are now used widely by players from all levels to analyse positions and games, in-
cluding grandmaster-level players to aid in tournament preparation. Strong players with access
to strong chess engines enjoy an advantage and consequently a desire to measure and compare
the relative strength of chess engines has emerged. Modern chess programs now far exceed
superhuman level and their strength is measured in computer chess championships such as Top
Chess Engine Championship (TCEC) and World Speed Chess Championship (WSCC) [4], [5]
in which hundreds of chess programs compete. They have elected the open-source Stockfish6 as
the reigning champion, and it employed in most popular online chess platforms.7

Despite regular progress, however, there are few literature surveys on computer chess method-
ology. Game tree pruning has been reviewed, but not recently [6]. Other reviews are too
specific, detailing only deep-learning-based chess techniques [7], or do do not pertain to chess
specifically [8]. Moreover, seminal work by Silver et al., has reshaped assumptions about how
to develop state-of-the-art chess engines [9], [10], yet a comparative review of the literature has
not emerged. Novel techniques in traditional engines also have continued to emerge at steady
pace, which also have not seen literature survey review.

Addressing this knowledge gap, this article presents a systematic survey on tree-based computer

1https://web.archive.org/web/20160904032818/http://www.fide.com/component/content/article/1-fide-
news/6376-agon-releases-new-chess-player-statistics-from-yougov.html

2http://ratings.fide.com/download.phtml
3https://www.fide.com/news/782
4https://www.chess.com/blog/erik/incredible-second-wave-of-interest-in-chess
5https://www.chess.com/news/view/blockchamps-sets-chess-viewership-record
6https://stockfishchess.org/
7Chess.com, Lichess.org, and Chess24.com all use variants of the Stockfish engine.
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chess techniques and methods. The contribution comprises four parts:

1. Section 2 introduces the high-level design of computer chess engines, as well as common
enhancements that strong engines all implement such as transposition tables, iterative
deepening, opening books, and endgame tablebases.

2. Sections 3 and 4 present the implementation of traditional Minimax chess engines, their
common variations, and how domain-level heuristics selectively extend candidate move ex-
ploration (search extension), reduce it (search reduction), or eliminate it from search (prun-
ing).

3. Section 5 Discusses four common techniques to evaluate leaf node board evaluations, which
are used in both Minimax-based and MCTS-based approaches.

4. Section 6 introduces the new and competitive approach based on Monte-Carlo Tree search.
We discuss a competitor to the state of the art, AlphaZero, and several variations and
improvements upon the initial work, such as MCTS–Minimax hybrids.

Method

This survey incorporates literature which has been obtained from a systematic search process.
We query databases Google Scholar, dblp.org, and ACM Digital Library for permutations of
keywords chess, minimax, tree search, Monte-Carlo, time management, alpha beta pruning,
game tree, and search tree, while limiting the search to one hundred articles per query. We
subsequently filter results if they are irrelevant to the survey topic, of low academic quality, of
a publication date before 1990 and with low citation count, or unobtainable in digital format.

This process resulted in 132 unique articles, which were further filtered based on whether they
contribute key concepts such that this article can present more manageable bibliography. Addi-
tionally, individual articles are only discussed briefly if they do not contribute novel techniques.
Because the history of chess research is long, some articles predating 1990 are included where
they establish fundamental concepts. We also include academic articles cited in Chess Program-
ming Wiki,8 which contains technical descriptions of topical techniques and implementations.
Finally, informational references are provided as footnotes throughout this article.

2 Background

We now cover essential theory, developed over decades, which forms the basis for traditional
chess engines. Chess is a sequential two-player perfect-information game [6]. Each game is
described by a list of moves from the starting position, and each intermediary game state
corresponds to a position on the chess board. We note that the game state is not only predicated
by the position on the board, but also other factors, such as the castling permissions, the en-
passant rule, the three-move repetition rule, and the fifty move repetition rule, all of which
depend on the exact sequence of moves [11].

Formally, a finished game G of length n is a sequence of actions (in chess terms, a ply, two of
which from a move): G = (a1, ..., an) in which each player chooses an action at ∈ At from the
set of valid moves At in turn. We denote that state of the game Gt = (a1, ..., at) as the actions
up until move t. At is dependent on the game state at that point, where Gt is a prefix of G.

8https://www.chessprogramming.org
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That is, At = f(Gt−1) for some legal action generator f(·). The result of a game, R is a win
(+1 point), a lose (0 points), or a draw (1/2 a point), depending on whether the last move of a
game resulted in checkmate, or a draw is claimed based on the rules of chess or otherwise agreed
by the players. In practice, chess engines emulate agents interacting with the game state. Their
goal during play is to maximise the result. That means, at time t, play the action at for which
the evaluation Sat = P (R = 1|at, Gt−1) + 1

2P (R = 1/2|at, Gt−1) is maximal.

2.1 Traditional Chess Program Design

Traditional chess engines comprise of four components: a representation of the board, a function
to generate moves based on the game state, a tree search implementation, and a function to
evaluate a given game state [6]. Many different board representations exist, which can be
broadly categorised in piece-centric (e.g., piece lists and bitboards), square-centric (e.g., mailbox
and piece arrays) and hybrid solutions.9 Board representations feature trade-offs in speed and
memory requirements, but we will not cover them in detail for the purpose of this review. The
interested reader can find further treatise in [12] and [13].

The move generation component and tree search component work in tandem to generate and
explore candidate moves, which are subsequently ranked by the evaluation function [6], [13].
The total number of possible moves grows exponentially with each consecutive move, and it is
impossible for the evaluation function to determine the true strength of each move. Hence, a
more precise evaluation is achieved by exploring the game tree systematically and evaluating the
resulting positions at the leaf nodes. The evaluations are combined in the Minimax algorithm,
or a variant thereof, further presented in Section 3, which yields the improved evaluation for
the game state. Typically, strong chess engines increase or reduce the search depth based on
game heuristics, known as search selectivity, which we further present in Section 4. Finally, the
evaluation function approximates the winning chances of the outcome at the leaf nodes. We
discuss the evaluation function further in Section 5.

2.2 Common Enhancements

In addition to the aforementioned key components of chess engines, several other techniques
are employed to increase playing strength. Given a game state Gt and who candidate actions
a1 and a2. In certain scenarios, we find that Gt ∪ (a1) ∪ (a2) may be equal to Gt ∪ (a2) ∪ (a1)
in terms of board position and order-dependent rules (e.g. 50-move rule). These actions can
lead to the same effective game state by transposition. In chess, transposition often occurs
and strong engines make use of transposition tables, effectively caches, which store computed
recursive evaluations of certain positions during search. If a subsequent search discovers an
equal position, it does not need to be recomputed [14]. This, in addition to other performance
enhancing techniques such as parallelism [15], can significantly increase playing strength.

As most chess games are timed events, proper time management is often a crucial component
of chess engines, and time management strategy should be adaptable to different chess time
controls. Many strategies exist [16], [17]. A common and flexible technique is iterative deepening,
in which the search depth starts low and is increased once each search iteration completes. This
approach has two benefits: firstly, a candidate good move is always available (i.e., the node with
highest evaluation at the last completed search), enabling the parent time management strategy
to abort search at any time. Secondly, heuristic search selectivity techniques (See Section 4)

9https://www.chessprogramming.org/Board Representation
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can reorder candidate moves in between search iterations and prioritise high-potential candidate
moves. Other time management super-strategies exist, and they often account for many factors,
including game phase, time remaining on the clock, phase of the game, and the complexity of
the position. A more comprehensive analysis is presented in [18].

Often, engines also use precomputed opening books and endgame tablebases (EGTs) during
the start and end phases of the game. Opening books store strong responses to common
opening actions. They are typically constructed by expert players, although some automatic
opening book creation techniques have proved to be strong contenders [19]. Conversely, endgame
tablebases store exact best-moves for positions in the final stages of the game [20]. They are
typically created through an automatic process using retrograde analysis (i.e., by generating
reverse moves from all possible winning, losing, and drawn terminal positions). The advantage
of this approach is that, if the generation process is exhaustive, they are known to be correct.
The current state-of-the art is Syzygy Bases, which store the correct sequence of moves in all
possible positions with up to six pieces (149.2GiB) or seven pieces (16.7TiB).10

3 Minimax-based Search Algorithms

Almost all chess programs search using a variation or optimised version of the Minimax al-
gorithm. In principle, all moves are considered from the current node (i.e., the current game
state), iteratively towards the leaf nodes specified by the search depth [6], [21]. For a two-player
game such as chess, the minimax algorithm finds the move with the highest evaluation at the
root node (the ‘max’ step). To do so, it determines the evaluation which is worst for the player,
and thus best for the opponent one action ahead (the ‘min’ step), and so forth. At every level,
the algorithm assumes that the player and the opponent both play the best theoretical moves,
and consequently the algorithm minimises and maximises the evaluations of the actions at every
depth.

Some chess programs instead implement Negamax [6], which is equivalent to Minimax by em-
ulation. The algorithm does not have two interlinked steps, but only a maximisation step,
and reformulates the minimisation step in terms of maximisation, at each node in the tree.
This yields an equivalent evaluation due to the equality min(Sa1 , Sa2) = −max(−Sa1 ,−Sa2) for
scores Sα after a move α. The primary benefit is the simplification of the implementation as
each evaluation yields a recursive call to the same procedure.

Note that the number of nodes grows exponentially with the depth of the search tree. As a
consequence, strong chess engines benefit from minimising exploration relative to evaluation
confidence. In other words, if the best action is ab, and for two actions a1 and a2, and if the
credence Cr(a1 = ab) > Cr(a2 = ab), then the program can gain playing strength by exploring
a1 more deeply than a2. This gives rise to tree pruning techniques, which aim to minimise the
number of positions the algorithm explores and evaluate.

3.1 Alpha-Beta (α− β) Search

Alpha-Beta pruning, first popularised by Knuth and Moore [22], is a technique for search tree
reduction by tracking a valuation bound [α, β] on the valuation of the subtree during search [6].
By employing a depth-first search approach, Knuth and Moore showed that certain subtrees can
be eliminated from search. In particular, consider a search depth of two an action at timestep

10https://www.chessprogramming.org/Syzygy Bases
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t, at,1 which is fully explored and evaluates to a score of St,1 = 1/2. If another action at,2 with
score leads to move for the opponent at+1,1 with score St+1,1 < St,1, then we can ignore all other
responses of the opponent to at,2 because at,1 is a preferable move to at,2. Effectively, this is
an application of the minimax assumption that the opponent will always play the best possible
move. For search depths higher than three, both an upper bound and a lower bound should be
maintained because both players can affect the evaluation at a given depth.

There are several variations of alpha-beta search. Firstly, SSS*, first introduced by Stock-
man [23] in 1979 has provably equal best-case performance when contrasted to alpha-beta
search, yet shows potential speedup by evaluating promising nodes first and exploring the en-
tire search tree in parallel, akin to breadth-first search techniques. The speedup of SSS* can
attain depends on the properties the search tree. However, subsequent literature conjectured
that due to the parallel nature of the algorithm, it has worse memory bounds, and needs sig-
nificant tuning to be effective, to consequence of impracticality [24]. Reformulations of SSS*
in terms of a depth-first search algorithm derived from alpha-beta yielded AB-SSS* and SSS-2
which largely solved memory issues [25].

As shown in early work by Marsland [26], more nodes can be pruned in narrower search win-
dows [α, β]. Fail-Soft alpha-beta pruning [27] proposed by Fishburn in 1983 which, through
experiments, shows further search evaluation reduction by up to 16 percent. This approach
places stricter soft bounds on the subtree evaluation. If the evaluation yields a value outside
the soft bounds, the subtree must be searched again with the stricter bounds. In combination
with transposition tables, which often store bounds, the resulting implementation searches fewer
nodes when transpositions occur.

3.2 Aspiration Windows and Null-Move Search

Further improvement can be obtained using aspiration windows [28], [29] which reduce the
search space by estimating the bounds of alpha and beta in alpha-beta search based on the
evaluation of the current node. If a game state Gt has a score St. The aspiration window is
[α, β] = [St − ε, St + ε] where typically ε = 0.5 equalling to half a pawn. This approach leads
to the gradual widening technique,11 in which the bounds are increased when the evaluation
exceeds the aspiration window asymmetrically. For example, if the valuation fails high, the
upper-bound is increased gradually until passing bounds are found.

Principal Variation Search (PVS) is based on null-move search [26]. If the regular alpha-beta
search process finds a sequence of actions without cut-off from the root node to the leaf node,
it is selected as the principal variation, and it is likely that deviations early in the sequence
will not lead to a better valuation. Therefore, PVS will subsequently test exploration of moves
at lower relative depth to the root node using a null-move search which tests whether the new
move can be pruned due to the impossibility of a better valuation than the principal move.
Such a search is cheaper than full exploration of the subtree.

In the extreme case that the aspiration window limε→0 β − α = ε, tree pruning can be applied
maximally, called null-move search, leading to highly efficient search algorithms [24], [27], [30].
The Negascout [31] algorithm is based on null-move search and has provably better performance,
in particular in combination with transposition tables, although alpha-beta search remains
more popular in practice. Applying the same principle to the reformulated version of SSS*
in minimax terms (i.e., SSS-2), resulted in the Memory-enhanced Test Driver algorithm [25],
often abbreviated MTD(f), which outperforms almost all versions of alpha-beta search, as well

11Some chess programs, such as Crafty, employ this technique. https://www.chessprogramming.org/Crafty

5



as SSS* [24].

In 2011, Rutko presented Fuzzified Game Tree Search, more commonly known as Best Node
Search (BNS), which is the current state of the art in game tree search, and was found to be
the most efficient minimax algorithm, outperforming SSS*, NegaScout, and MTD(f), including
their variations with ten percent speedup [32]. BNS guesses the minimax value, and iteratively
calls alpha-beta search with null-move aspiration windows to determine if the minimax value
in the subtrees are better or worse than than the current guess. Although BNS has theoretical
performance gains, it has not been tested on chess, and it is unclear whether it leads to practical
strength gains.

4 Search Selectivity

In most turn-based games, including chess, the quality of the actions At at timestep t varies
greatly, and chess engines can thus benefit from exploring more promising variations more
extensively than variations which are clearly worse. Moreover, the complexity of evaluation for
game states also varies. In chess terms, simple board positions are ‘easier’ to evaluate than
thuse with many tactical possibilities. This gives rise to selective search [33], [34], which are
techniques to prioritise, extend, or reduce subtrees based on heuristic methods. We discuss
these methods, and several specific techniques, in turn.

4.1 Search Extensions

Search algorithms suffer from the horizon effect at the leaf nodes [6], [35], [36]. Often, it
is possible to delay an inevitable negative consequence such as checkmate by several actions,
leading to significant differences between approximated and true evaluation. Formally, consider
a shallow evaluation Sd at depth d to be significantly different from the evaluation Sd+δ for
some positive integer δ. If the search depth s is fixed and bounded by d < s < d+ δ, then the
search will yield an evaluation with a significant error from the true evaluation. The evaluation
effect may be positive or negative, and if discovered early on, may permit for more aggressive
alpha-beta pruning (see Section 3.1).

To combat this effect, several search extensions exist which aim to resolve tactical positions
at the leaf nodes. Many search extensions exist, and all are based on domain-level heuris-
tics pertaining to chess. Among others, these extensions include evaluating whether checks
(re)captures, passed pawn moves, single-reply moves, or similar heuristics influence the game
evaluation. In principle, the goal of search extensions is to evaluate ‘quiet’ positions as much as
possible, also known as quiescence search [6], [34], as they give a more accurate representation
of the evaluation score at the leaf node than those which create tactics.

4.2 Search Reductions and Pruning

In certain cases, it may be beneficial to instead reduce or remove subtree evaluation based on
domain-specific heuristics. We distinguish between two techniques: pruning, in which subtrees
are removed entirely from search, and reduction, in which the the recursive depth is reduced.
While some pruning techniques guarantee the equality of the evaluation after pruning (strong
pruning), heuristic approaches do not have this guarantee (weak pruning), yet still result in an
increase in playing strength [6]. Heuristic pruning techniques present some risks: inherently,
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there may exist specific sequences of actions resulting in an evaluation different from the evalua-
tion at the leaf node. In this way, the horizon effect is created willingly, and strong chess engines
typically balance heuristic pruning and search extensions to maximise play strength [37].

Several pruning techniques, both strong and weak, have been proposed in literature. The
most common is alpha-beta pruning (see Section 3.1), but we will mention several others here
briefly. Futility Pruning [38] discards candidate actions which cannot increase the lower-bound
of the alpha-beta search at nodes which are distance one from the search horizon. It has
been extended to Deep Futility Pruning,12 Late Move Pruning,13 Extended Futility Pruning [39]
and AEL pruning [40], the last of which has been tested experimentally to attain at least 20
percent fewer nodes explored while maintaining play strength. Multi-cut pruning, and variations
Enhanced Multi-Cut Pruning and Enhanced Forward Pruning cut-off multiple lines of play if
they are not likely to influence the root node evaluation [41].

Levy et al. proposed the Search Extension (SEX) algorithm [33], which combines several search
extension and reductions, considering the latter negative extensions. In essence, their approach
aims to, at each node in the search tree, sort subtree actions based on their tactical merits. By
exploring tactical moves, such as checks and captures first, more aggressive strong pruning can
be applied in subsequent candidate top-level moves. Their work also makes use of fractional
reductions in which multiple heuristic rules each contribute fractional depths in the recursive
search call. Fractional depths may constitute increased or reduced whole-ply depth in subit-
erations of the algorithm. Their algorithm was improved throughout 1981–1988 with a focus
on distinguishing which moves lead to interesting variations. The SEX algorithm had wide
theoretical influence but is no longer commonly employed.

5 Evaluation Functions

After search yields a leaf node, it is evaluation function which estimates the winning chances
at the given game state. The result is often a real number which, for the benefit of the chess
user, is scaled according to traditional assumptions about piece values (i.e., a valuation of +1
means that the white player has an advantage of one pawn). Evaluation function implementa-
tion differs greatly between implementation and is often at the crux of chess program strength.
Many different approaches to current board evaluations exist, but they can be broadly cate-
gorised into (i) manually tuned functions, (ii) automatically tuned functions of crafted features,
(iii) neural-network-based approaches, and (iv) evolutionary or genetic approaches. We discuss
each in turn.

The first chess program evaluation functions developed manually tuned [2], but reference imple-
mentations for new program designers often also advocate for such simple and straightforward
approaches [13]. They consist of applying broad rules which are widely held to be valid. (e.g.,
a knight is thrice as valuable as a pawn, centre control and king safety is important, etc.), and
assigning to each rule a manually tuned weight. Weighted features can be combined in linear
or nonlinear combinations,14 and because chess theory is extensive, many rules can be applied
on a trial-and-error basis. This approach can yield strong chess engines given sufficient effort.

Strong chess engines such as employ a combination of handcrafted features in combination with
autotuning. Many engines employ this approach but the most notable is Stockfish. In partic-

12https://home.hccnet.nl/h.g.muller/deepfut.html
13This reduction is combined with Late Move Reductions in the strongest open-source chess engine Stockfish.

See https://www.chessprogramming.org/Futility Pruning
14https://www.chessprogramming.org/Evaluation
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ular, Stockfish incorporates dosens of carefully selected features into its nonlinear evaluation
function, including those pertaining to material, attacks, pawn structure, game phase, pins,
king safety, space, mobility, centre control, passed pawns, material imbalance, and winnable
pieces.15. These features are subsequently automatically tuned using the Confident Local Op-
timization for Noisy Black-Box Parameter Tuning framework (CLOP).16 This is a stochastic
gradient descent approach which iteratively finds more optimal solutions of the weights, which
are determined by self-play.

Academic literature has proposed several neural network based approaches. Primarily, these
approaches offer the benefit that no manual selection of features is necessary. As deep learning
methods have been reviewed recently by Mehta et al. [7], we here only mention the most
prominent. Giraffe, proposed by Lai attains master-level play while searching an order of
magnitude slower than weaker chess engines. DeepChess [43], [44] attains grandmaster-level
play, inputting two chess positions and outputting a prediction on which is better. Sabatelli
et al. evaluates many different network architectures and performed supervised learning taking
human grandmaster games as input vectors and Stockfish evaluation results as the corresponding
labels. Finally Wan and Kaneko investigate a novel type of regularisation that can improve upon
typical L2-regularisation for game trees [46]. Many other network-based approaches exist, but
are beyond the scope of this review [47]–[55].

Evolutionary approaches have also been tried, as the complexity and intricacy of valuations
lends itself to an incremental approach. Typically, these evaluation functions are either genetic
individuals trained in populations or neural networks of which the weights are trained in similar
fashion. Pocket Fritz 2.0 [56] shows master-level strength using unsupervised learning through
self-play. In a hybrid approach, Tempo [57] generates neural networks in a modular fashion
which are invariant to the network size and static hyperparameters. David et al. first presented
experimental proof that grandmaster-level play can be attained using genetic algorithms aug-
mented by coevolution, although the algorithm still relies on crafted input features. There are
other similar attempts, some attaining strong sub-master-level play [59], while others do not
contest traditional approaches at all [60].

6 Monte-Carlo Tree Algorithms

Traditionally, alpha-beta pruning chess engines have shown strongest play, although other tech-
niques have been attempted. Recently, however, Monte-Carlo Tree search (MCTS) algorithms
have seen a rise in popularity since DeepMind introduced AlphaZero in 2017 based on their
prior work on AlphaGo in 2016 [10]. We present their novel approach in Section 6.1 and discuss
subsequent literature in Section 6.2.

6.1 AlphaZero

AlphaZero [9], [61] is a state-of-the art chess engine which outperforms Stockfish, heralded by
the Top Chest Engine Championship [4] as the strongest contender. Their approach is dissimilar
from regular tree based search in that it iteratively plays games during search, selecting contin-
uously a action move based on a stochastic Monte-Carlo process πt until the game concludes
in a win, draw, or loss. The stochastic process selects moves which are most unexplored, have
high evaluated score, and high average win rate in previous explorations.

15https://hxim.github.io/Stockfish-Evaluation-Guide/
16https://www.remi-coulom.fr/CLOP/
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Their evaluation function fΘ = (p, v) is a neural network which not only yields the estimated
result of the position scaled to [−1, 1] (i.e., v = 2R − 1 in earlier notation), but also a policy
vector p which, for each candidate action pa ∈ p represents the normalised evaluation of each
candidate action. The neural network is trained on game data with an error function which
comprises the squared difference between the valuation v and the result of the game at each
move, and the cross-entropy loss of the policy vector relative to πt.

Furthermore, their approach is completely based on self-play. At each training step, the program
plays itself and updates the neural network weights by the average gradient for each weight
update of both players. The update employs the Bayes’ theorem for updating the weights. The
algorithm does not receive prior information about the game rules, except that only legal moves
are considered by the MCTS process, and that noise is added to the Bayesian optimisation
update priors to stimulate exploration.

The work by Silver et al. is notable because it not only contests widely held beliefs that alpha-
beta algorithms or variants thereof are inherently stronger than differing approaches, but also
because their work is general, as they apply the framework to Go and Shogi. The work also
contests the notion that programs which visit more nodes during search are inherently stronger.
Furthermore, the authors demonstrate how AlphaGo selects natural moves in complicated po-
sitions while traditional chess programs often struggle in these situations [35].

6.2 Monte-Carlo Tree Search Extensions

Since the publication of AlphaZero, more strong competitors have emerged [62], including strong
chess engines such as Komodo MCTS 17 Rybka,18, adaptations of Stockfish,1920 and an open-
source engine based on AlphaZero directly, LeelaChess.21 LeelaChess has subsequently placed
second in the Top Engine Chess ChampionShip [4], although the developers note that many
hyperparameters are approximations AlphaZero’s implementation as many technical details are
not released in the original publications. Wan and Kaneko show how to augment AlphaZero’s
training procedure for reduced computation requirements for equal performance.

But MCTS techniques shown to be broadly applicable to other similar two-player games. Go
and Shogi have since seen seen novel research in their fields [63], as well as in Chinese chess [64].
But but also in real-time games, MCTS has made an appearance. Further research by DeepMind
showed that MCTS-based approaches can achieve state-of-the-art performance in playing Atari
video games [62].

Although previous literature reviews have seen dosens of MCTS extensions, many have not yet
been applied to chess, which may prompt interesting avenues for further research [8], [65]. For
example, MCTS extensions have shown to greatly improve evaluation performance, including
MCTS–minimax hybrid approaches proposed by Baier and Winands [66] who argue that MCTS
approaches can make tactical mistakes by falling into traps because only the most promising
variations are sufficiently explored. They propose three methods to integrate traditional Min-
imax approaches into the MCTS process, thus ensuring that crucial variations are not missed,
and thus outperform classical MCTS. Their approach untested on chess, however. Huang pro-
pose rollout techniques to unify MCTS and minimax architectures [37].

17https://komodochess.com/Komodo13.htm
18http://www.chessbase.com/newsdetail.asp?newsid= 5075
19https://github.com/OhJayGee/SugaR
20https://github.com/amchess/ShashChess
21https://github.com/leela-zero/leela-zero
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Another MCTS extension, Rapid Action Value Estimation builds on the assumption that for
some games, the valuation delta of an action a1 is invariant to depth within the search tree [67].
In other words, the order of the actions does not matter. This can be the case when the pieces
moved by two actions do not interact with each other. By extracting this temporal invariance
from the evaluation procedure, the search speed may see significant speedup, although the
approach has been tested on Go, it has also not seen experimentation on chess [68], [69].

Parallelism, is also more straightforward to apply in MCTS programs in contrast to alpha-beta
search [8], [67]. Alpha-beta algorithms operate on a single search tree for which the breadth
is unknown at the start of search, and thus reallocation of subtrees to processors is common.
MCTS simplifies parallelism as each simulation of a game can be perform independently, and in
parallel. Synchronisation of game results is not immediately necessary for simulation of further
games to occur, and an eventually consistent data sharing approach can be applied until the
move must be played.

7 Conclusion and Further Research

Chess is more popular than ever, and although chess continues to pique the interest of aca-
demics in literature and engineers in design alike, it has seen few comparative literature studies.
This article presents both traditional minimax-based chess algorithms and new developments
in MCTS-based approaches. Although the MCTS contender AlphaZero has beat previous iter-
ations of Stockfish, this is no longer the case for newer versions. Still, the differences in playing
strength are small. Both approaches have benefits: Minimax-algorithms are deterministic and
provide strong guarantees that certain variations are not missed, while MCTS algorithms excel
in finding long-term advantages beyond the depth that exhaustive Minimax search can provide.
It is clear that the dominant strategy is not yet determined, and may only become apparent
with further experimental research and application.

Many extensions and variants of Monte-Carlo algorithms exist in literature, including several
MCTS–minimax hybrids, but have not been applied to chess. Conversely, the state-of-the-art
Best-Node Search has not yet seen application to chess. These could be interesting avenues
for further research. The creative reader may consider other combinations of techniques which
remain unexplored. For example, MCTS could be combined with a genetic-programming-based
evaluation function. Search reductions, which are common in alpha-beta pruning algorithms,
could also speed up evaluation in MCTS by determining game results when they become appar-
ent. MCTS algorithms still evaluate fewer positions than their counterparts. As collaborative
efforts between academics and the industry further investigate these methods further, they may
well find further advantages yet unexplored.
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