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Abstract

First models of deep learning used for single-image 3D reconstruction task decoded ob-
jects as voxels (volumetric elements) in a 3D grid. This shape representation was used
due to easy incorporation into neural network structure; many further studies used this
method. However, voxel 3D object representation and decoding process is inherently inef-
ficient, expensive to compute and requires additional post-processing. This review explores
alternative decoding strategies and object representations, such as mesh, point clouds, im-
plicit or parametric, and discusses their inherent qualities, performance and quality of the
results.
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1 Introduction

1.1 Introduction to the review

3D object reconstruction from single-image is an increasingly researched problem with a goal
of automating 3D object modelling. Research within this area increased substantially with the
rise in the use of deep learning models. Voxelized object representation, which describes an
object as a collection of blocks in a 3D grid, was widely applied for first deep learning solutions
to decode an object due to ease of integration into a neural network. However, the voxel
decoding strategy produces inaccurate 3D models, is computationally inefficient and requires
additional post-processing. This review aims to discuss alternative object decoding methods
for deep learning single-image reconstruction and compare their capabilities. This review will
discuss (1) why voxel object output methods to reconstruct 3D objects from a single image
were commonly used and are unsatisfactory, (2) what are the alternatives to the voxel decoding
method, (3) how the reconstruction quality of these alternatives compares quantitatively and
qualitatively and how easy are they to integrate into deep learning model, (4) what are the
current trends in this research and what solutions are the most promising regarding future
research. This review does not aim to discuss deep learning models generally for mentioned
reconstruction problem or their encoding methods, as well as problems relating to the data
used to train such models. The reader is expected to have an understanding of deep learning
and convolutional neural networks. Knowledge in computer vision, computational geometry
and 3D object reconstruction problems is useful but not necessary.

1.2 Single-image object reconstruction

3D object reconstruction is an abstract and important task of computer vision. This task
can be separated into single-image and multi-image 3D object reconstruction. Solutions for
single-image reconstruction problem can be applied to solve more specific problems, such as
automating modelling of 3D meshes for computer graphics, reconstruction of more constant
shapes, such as 3D human body shape [1, 2], or elsewhere. Single-image reconstruction requires
a much smaller amount of data to reconstruct a 3D object and can be applied to a substantial
amount of existing data, like real-life photographs or target objects’ sketches.

Prior to an increased popularity in deep learning, the research in single-image 3D object re-
construction was scarce. Initial methods were mostly limited to reconstructing objects of only
specific categories with a stable visual structure, such as faces [3, 4], or objects containing
some specific features, such as repeating texture patterns [5]. Reconstruction algorithms for
more general shapes were capable of reconstructing only very abstract visual forms, such as line
drawings [6], or were based on similar prior 2D image and 3D shape matches [7].

Deep learning solutions for this problem enabled the reconstruction of a much broader spectrum
of objects with more complex shapes and visual structures and provided better output quality.
It also introduced new challenges, such as reconstructing detailed objects, increasing memory
usage and computational complexity, learning to reconstruct rather than recognize objects [8],
inferring invisible or obstructed parts of objects, and how to efficiently output reconstructed
objects. Initial deep learning methods used convolutional neural networks for image processing,
and voxel (volumetric element) grid as a representation of a decoded object [9, 10] due to easiness
of incorporating it into a neural network structure. Despite many disadvantages (section 1.3),
voxel decoding solution evolved into a trend, and further research used this strategy, while even
further research focused on offering alternative shape representation methods (section 2).
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1.3 Related work and contribution

Previous reviews of this subject encompassed a more general reconstruction topic, such as
mainly non-deep-learning-based 3D shape reconstruction from single or multi-image input or
videos [11], or other review focusing on mainly deep learning approaches for also single and
multi-image reconstruction [12]. Fu et al. [13] reviewed single-image deep learning solutions
generally, by discussing their encoder and decoder types, as well as training and testing details
with a comparison of the results.

In this review, the decoding structures and shape representations used in single-image 3D re-
construction deep learning models will be explored more deeply, by progressively building a
framework of essential ideas and innovations. The fundamental shortcomings, advantages, im-
plementation challenges and final results of the decoding methods will be discussed. The goal of
this review is to explain fundamental inferiority of voxel decoding strategy and guide the reader
towards potentially better alternatives for further research within single-image 3D reconstruc-
tion or incorporation of such models in some domain.

2 Voxel decoding method and its shortcomings

3D object representation using a grid of voxels was used in initial single-image reconstruction
deep learning methods [9, 10]. Voxels (volumetric elements) allow representing 3D shape in a 3D
grid of blocks, similar to how an image is expressed in a 2D grid of pixels. Voxels have a binary
state- they can either be filled and express a part of an object or be void. Such a representation
layer can be easily attached to convolutional neural networks to output a 3D structure because
of being a fixed-size grid. However, this structure has some significant disadvantages. Firstly,
such structure requires post-processing to convert it to a much more usable type, such as 3D
mesh. Due to a grid structure of voxels, they need to interpolation to be converted to mesh,
which induces loss of information, lower quality and additional computation. To compensate
for reduced quality, this leads to a second problem- high memory and computational costs. A
larger amount of grid cells is sought to obtain a more detailed object, which in practice can even
reach amounts of 5123 [14]. Even for smaller sizes, this presents a very high output space due to
cubed structure space which requires a lot of resources, especially GPU or CPU memory. Also,
a large neural network must be trained on equally high-detail and computationally expensive
data samples to be capable of decoding small features of objects.

Figure 1: A Neural Network structure to decode voxel shape used by Yan et al. [10] with an example of input
shape with it’s reconstruction in voxels. (Original images from [10])

After the introduction of voxel grid output method to deep learning models [15] and their early
incorporation into single-image reconstruction models [9, 10, 16], much further research has been
devoted for improvement of models using this shape representation [17, 18, 19, 20, 21, 22]. Also,
plenty of research tried to improve voxel representation method to mitigate described challenges,
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mostly by using octree [14] or other hierarchical structures [23, 24] to lower computational
demands and increase recovered detail, or using some intermediate representations, such as
2.5D sketches [25] or other [26, 27, 28] to also increase quality. While some of these methods
provide competitive results or creative solutions and the amount of research conducted for this
decoding method is much higher compared to others, the previously mentioned fundamental
problems of decoding voxel shapes are not mitigated.

3 Alternative decoding methods of 3D objects

3.1 Polygon meshes

Polygon meshes are 3D object representations described using a collection of faces, edges and
vertices. This object representation is very commonly used for various applications. Therefore
it is appealing to decode an object in this format directly. It is also easy to further expand
this representation by recovering textures or other features in the same model. However, it is
challenging to create an efficient mesh decoding method applied to neural network architectures.
This challenge arises due to (1) mesh being a more complex structure with its structural elements
(vertices, faces, edges) being connected, opposite to independence among voxel cells in a voxel
representation, (2) varying amounts of detail in a single model requiring differing amounts of
density of vertices and faces in different places of an object, (3) it is challenging to reconstruct
more complex topological features (e.g. holes) and (4) reconstructed mesh faces are prone to
colliding with each other.

Kato et al. [29] criticizes voxel and point could decoding methods and offer an early alternative
by directly decoding mesh shape using a convolutional neural network. Due to complex structure
of meshes, which are not easily compatible with neural networks, authors taught a neural
network to decode a mesh object by offsetting vertices of a pre-set mesh shape with a fixed
amount of vertices, rather than to decode the mesh from scratch. For their experiments, authors
use a pre-set isotropic sphere mesh with 642 vertices, which is a much smaller amount of
structural elements compared with even very low quality of voxel spaces used in practice to
decode object (e.g. 323 [9]). Authors also offer a creative way to calculate neural network loss
for reconstructed mesh structures. Due to difficulty of calculating loss by comparing generated
mesh structure with the ground truth, Kato et al. render generated shape to the 2D silhouette
and compare its overlap with an object silhouette in an input 2D image. To allow back-
propagation, they present a differentiable renderer, which allows gradient flow from silhouette
overlap comparison to the mesh output stage of the neural network. This solution also allows
recovering the texture of an object by rendering a mesh shape with a texture and comparing
it with an input image itself. Another early solution by Pontes et al. [30] offers an entirely
different method. The proposed model encodes an input image into an embedding vector which
is later used to find the most related 3D shape from a large set of already modelled 3D objects.
This pre-defined model is later additionally transformed. The method produces accurate results
but is limited in terms of classes or abstract shapes of objects and requires saving many object
mesh models instead of learning the reconstruction task.

Chen et al. [31] further expanded Kato et al.’s solution [29] to incorporate lightning into the
differentiable renderer and calculated loss between an original image and generated rendered
object with texture. Liu et al. [32] offers a renderer which rasterizes objects in a probabilistic
manner and allows better gradient flow. Kanazawa et al. [33] provides a solution which can
learn 3D reconstruction and texture without having a 3D mesh annotation. This solution also
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initializes the shape of a template mesh as a mean of meshes of an input object’s class, further
improving the results when offsetting vertices of this mesh to generate an output. However,
this weakly supervised method requires other types of annotations- object masks and key-
points, which are not easy to attain. Wang et al. [34] obtains state-of-the-art by iteratively
up-sampling a generated 3D mesh, which is initially regressed from an ellipsoid. Authors also
obtain benefit by using graph-based convolutional neural networks [35] to decode mesh structure
and an improved loss calculation strategy. Pan et al. [36] follows a similar path and also claims
to have achieved state-of-the-art. Authors also use an iterative refinement of the structure with
more advanced neural network architecture. Most importantly, authors modify their model to
design shapes with complex topological features, such as creating holes in their shapes. During
training, it is estimated how much each vertex is distanced from ground truth, and dense
patches of such vertices are progressively erased from the mesh. Finally, authors introduce a
loss calculation using Chamfer distance from a sampled point set in a generated and ground
truth 3D shapes, opposing to the rendered 2D shape comparisons as in previous research. This
combination of improvements provides impressive quantitative and especially qualitative results.

Figure 2: An image from Wang et al. [34] displays their proposed iterative decoding structure. A 3D object is
reconstructed by offsetting vertices from a pre-set ellipsoid shape which is iteratively up-sampled.

However, the research direction introduced by Pontes et al. [30] where a pre-defined shape of an
input image object’s class is deformed by a neural network is less popular. Some research [37, 38]
was conducted in this direction, but the solutions were less innovative, and the fundamental
issues of this method still remain. Another direction of the approach taken by Gkioxari et al.
[39] offers a solution which is capable of extracting target objects from a scene with a modified
Mask R-CNN [40] object detectors. A detected object in an input image is converted into
an intermediate voxel representation to avoid mesh topological limitations by allowing to form
holes and other complex features. The voxel shape is then converted to a mesh and refined using
graph convolutions. Also, the usage of an object detector allows the algorithm to reconstruct
multiple objects from the scene and adjust their rotation according to their original position in
a 2D input. Despite innovations and topological capabilities, the solution is limited in terms of
the quality and smoothness of a decoded mesh shape.

3.2 Point clouds

3D point clouds are simply collections of points in a 3D space. Due to this simplicity, it
is tempting to reconstruct objects in this format. This object representation allows a much
simpler object decoding, as points in point clouds, as do voxels, do not have connectivity
with each other, opposite to mesh vertices. Decoding objects as points also allows potentially
more complex topological features due to the absence of faces and edges. Most importantly, by
retaining some important advantages of voxel grids, point clouds are represented in a continuous
space, opposite to a discrete voxel space, requiring a much smaller amount of output parameters
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for a neural network as all of these parameters are being used only to represent surface instead
of volume. However, point clouds are not as commonly used format as other formats, such as
meshes, and they are not easy to display visually due to the absence of surface in their structural
representation. The conversion process from point cloud to mesh or other type is non-intuitive,
leading to loss of important information, such as holes or small detail, or inaccurate reformatting,
a problem also related with voxel objects. Usually, in the discussed solutions, the point cloud
is converted to the mesh using a non-deep learning algorithm, such as Marching Cubes [41].

Fan et al. [42] offers the first and an important study of an application of point cloud decoding
to single-image reconstruction model. To represent a 3D shape in their experiments, authors
use a neural network to generate a point cloud output of 1024 unordered points with three
variables, each representing coordinates in (x, y, z) space. During training, the generated points
are compared with the set of points from ground truth 3D mesh using a combination of Chamfer
distance and Earth Mover’s distance losses. Authors claim to have surpassed the state-of-
the-art of previous best single-image reconstruction model and argue that point cloud shape
representation is easier to learn due to the absence of combinatorial connectivity patterns,
opposite to, e.g. mesh structure. Besides the novel approach in shape representation, authors
improve their neural network structure to work in a generative manner. During training and
inference, the neural network is given a random string of fixed length, additionally to its image
input. This allows the neural network to generate various interpretations of an invisible side of
an object by forming a distribution of plausible reconstructions. Despite these innovations and
great quantitative results during the publication of this study, the resulting qualitative results
are poor when the point cloud is transformed into a mesh, generating rough and inaccurate
surfaces.

Another solution by Lin et al. [43] criticizes volumetric grid decoding as having inherent draw-
backs and offers their alternative for decoding object as a set of points. Different from Fan et
al. [42], Lin et al. generate the final 3D structure by initially generating this structure from
multiple viewpoints and all generated point sets are fused into one. Authors also take a different
approach to loss calculation. Instead of comparing their shape to 3D ground truth object, they
use a pseudo-renderer to render generated and ground truth objects into depth images which
are compared pixel-wise, an approach which is similar to renderers for mesh comparison for
loss calculation [31, 29, 32]. Similarly to Fan et al. [42], authors claim to have surpassed the
state-of-the-art solution, however, this solution also does not gradually improve results from a
qualitative standpoint, while using significantly more points to reconstruct a shape.

Figure 3: An image from Lin et al. [43] shows the model structure. The main point cloud is inferred from
multiple point outputs. Multiple depth map projections are compared with ground truth to calculate loss.
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This idea is further improved by Insafutdinov and Dosovitskiy [44] to allow for unsupervised
learning. The differential renderer, similarly to Kanazawa et al. [33] with mesh reconstruction,
is improved to remove the need for 3D annotation during loss calculation, as well as to allow
texture reconstruction by comparing input image with a rendered image, rather than comparing
their silhouettes. In addition to point cloud output, authors also estimate the pose of an object
by learning camera position, which is used to generate an ensemble of multiple rasterizations
from slightly varying directions. Rasterizations from differing angles are then compared with
the input image, and the loss of the best-matching rasterization is back-propagated through the
network. These improvements not only allow to infer texture of a shape, significantly increase
training data but to also learn to generate more accurate shapes qualitatively, opposite to pre-
vious research. Finally, improvements by Mandikal et al. [45] display promising capabilities
of this decoding method. Researchers gain further improvement by implementing embedding
vector loss of trained network and a prior trained auto-encoder. Despite the absence of inno-
vations in decoding side, authors are capable of reconstructing high-quality point clouds from
only 2048 points, which is thousands of times lower compared to the output parameter spaces
required to compute high-quality voxel objects.

3.3 Shapes as equations

3.3.1 Implicit shapes

Implicit shapes are described using equations, rather than a set of points, vertices or other
elements, which is an emerging area of study for shape reconstruction problem. An object
described by a continuous function with a formal format of F (x, y, z) = 0 can be much more
accurate than in some more discrete form, such as polygon mesh. Such implicit shape is un-
limited by the resolution and can potentially take up less memory than voxel shapes, making
it appealing for reconstruction. Since the neural networks themselves can very accurately ap-
proximate various complex functions [46], the decoder itself can be used to learn to represent
implicit shapes, and its outputs used in some form to discretize the shape into an interpretable
format. Such decoding strategy can have some very convenient advantages: (1) as the implicit
shape is a continuous function, its conversion to a more easily interpretable format, such as
mesh, can have varying, adjustable and infinite amount of detail and (2) decoders can learn the
shape forms themselves, rather than some manipulation operations of a discrete shape, such as
described in mesh reconstruction, allowing a more easily learnable task.

A study by Chen and Zhang [47] was the first to offer decoding of a shape by learning implicit
fields. The proposed novel way of decoding a shape used a decoder to output whether a specified
3D point is inside or outside an object, given a latent vector of a shape as an input. A shape can
be decoded by consulting a decoder with many point coordinates and interpolating a boundary
between inside and outside of a shape, as a point can be anywhere in 3D space (opposite to slots
in voxel grids). Since a neural network can learn to approximate functions, the decoder, in this
case, can be interpreted as an approximator of an implicit shape constructed out of equations,
and a boolean point output strategy allows a way to decode it into a discrete and usable format.
Here, the only theoretical limitation to object’s detail is the decoder’s ability to approximate
this object, where in other cases it is also the number of allocated shape units, such as grid
size for voxels, points for point clouds and more. Mescheder et al. [48] explores a similar idea
and provides a more advanced shape recovery, which clearly demonstrates an advantage of such
implicit reconstruction by providing state-of-the-art results. Authors use a network to provide
a probability for whether a point is inside or outside of a shape, rather than a boolean.
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Figure 4: Image from Mescheder et al. [48] describes sur-
face decoding from an implicit decoder. Initial points are
interpolated depending on occupancy to increase detail,
then the mesh is reconstructed and refined.

To recover a shape, a low-resolution grid
of points is defined, passed though a net-
work and recovered probabilities are thresh-
olded with a goal of extracting iso-surface
from an implicit field. The points inside
or near a shape are interpolated iteratively
by increasing detail in a similar approach to
an octree. Both Chen and Zhang [47] and
Mescheder et al. [48] reconstruct a mesh
from obtained points using Marching Cubes
algorithm [41], where the latter approach
simplifies a shape with Fast-Quadric-Mesh-
Simplification [49] algorithm and refines using
gradients from a neural network. Both studies
use 3D-annotation based loss for training their
network. Niemeyer et al. [50] implements an
idea of differential rendering, which is circu-
lating in mesh or point cloud reconstruction.
It allows to recover implicit shape and texture and abolishes the need for 3D annotation for
training. Wu et al. [51] provide an interesting development, first of such kind in shape recon-
struction, by creating model able to reconstruct a shape from separate parts as a sequence.
A Bidirectional Recurrent Neural Network [52] sequentially reconstructs a shape by separately
reconstructing major surface parts of this shape, which are learned implicitly, and attaching
them together to form a full shape.

The usefulness of implicit shape representation was recognized and further studies aimed for
improvements using this idea. Park et al. [54] were the first to offer to learn a representation
of a shape as a Signed Distance Function (SDF). An SDF is a continuous function which for
any given point in space returns a distance from that point to the closest surface of a shape,
where a given result is positive if a point is outside of a shape and negative if it is inside. An
actual shape is represented by an iso-surface where given values of SDF are equal to 0. A
network for decoding a shape is trained using L1 loss by predicting SDF values of randomly
sampled points from a training 3D shape. However, authors indicate a comparably large value
of memory needed to reconstruct a mesh in their experiments (7.4 MB for each shape), being

Figure 5: Illustrations from Wang et al. [53] display their model architecture and an example of an SDF.
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just half of the memory needed to reconstruct a voxel grid shape with a size of 5123. Wang et
al. [53] further advance an idea of learning a shape as an SDF, but focus on recovering more
detailed and local features of a shape, also resulting in a state-of-the-art performance. During
encoding, the proposed model recovers an embedding vector together with local feature maps
from intermediate stages of a neural network, as well as camera pose. Both local and global
features are decoded separately and later added together, mixing both levels of detail. This
results in an ability to generate more thin shapes, holes and more detailed forms where needed.
However, the recovered shape using this method can be overly rough, sometimes resulting in
worse quality than its predecessor by Park et al. [54]. Both proposals by Park et al. [54] and
Wang et al. [53] retrieve a shape from a model by pre-defining a dense grid of points, inferring
their SDF values and reconstructing the results using Marching Cubes algorithm. Opposite to
previous binary implicit shape retrieving methods [47, 48], SDF shape networks do not need
multiple iterations of shape inference to interpolate the shape boundary, as SDF values of points
with close proximity to the boundary directly indicate the distance to it. Finally, Jiang et al.
[55] incorporate an SDF-based differential renderer allowing unsupervised learning. All provided
solutions to decode implicit shapes demonstrate impressive evaluation metrics, reconstructed
shape quality and topological features.

3.3.2 Parametric shapes

Similarly to implicit surfaces, parametric surfaces are also described using equations, which in
this case are describing transformations of points from 2D space to 3D space. More formally,
these shapes can be understood as parameters →r and u, v coordinates, returning a mapping to
x, y, z space, where →r is a collection of parametric equations f(u, v), g(u, v), h(u, v) return-
ing coordinates in corresponding dimensions. Learning such shape representations has similar
advantages to learning implicit shapes.

Sinha et al. [56] provide the first solution of parametric shape reconstruction for single-image
input. Authors use three separate networks with each being responsible for a specified paramet-
ric mapping function f(u, v), g(u, v), h(u, v) → x, y, z. To reconstruct a shape, a 64 × 64 × 3
geometry image with x, y, z coordinates is generated to infer a shape. However, the approach
is limited topologically, which is solved by Groueix et al. [57], where a different approach to
recover a parametric surface is used. Authors firstly sample multiple points from a 2D space
and transforming them using a Multi-Layer Perceptron, which acts as a parametric function,
transforming a point into a 3D space. This neural network is used to generate just a small patch
of a shape, needing multiple neural networks to generate all patches of the shape, which are
later ”stitched” into a final shape. Despite the recovered shape patches being accurate in their
form, the final shape reconstructed using these patches lacks visual quality due to intersections
of multiple parts being clearly visible in odd places.

Figure 6: Illustrations from Groueix et al. [57] display simple pipeline of reconstruction. The embedded shape
(latent shape representation), together with point in u, v space is passed through multiple Multi-Layer Perceptrons
to transform its position in multiple patches in x, y, z space.
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4 Comparison

4.1 Quantitative comparison

Table 1 depicts reconstruction quality evaluation of various models when reconstructing common
classes of 3D objects. These reconstruction models are either best in their domain, claim to
surpass state-of-the-art or their idea was key to further research. Reconstruction is evaluated on
ShapeNet [58] dataset with 3D annotations of various common but differing classes of objects
to evaluate performance in various circumstances. The most common and selected metrics are
IoU (Intersection over Union), CD (Chamfer Distance) [42], EMD (Earth Mover’s Distance)
[42]]. IoU is simply a percentage of overlapping volume between total volume of aligned output
and ground truth shapes, well describing whether reconstructed shape does not have excessive
parts or big gaps of volume. CD and EMD both are distance functions between two sets of
points sampled or inferred from ground truth and reconstructed shapes. Higher CD values
indicate more rough or poor quality shapes (such as missing holes) with high point deviations
from their ground truth values. EMD meanwhile, similarly to IoU, is more sensitive to more
abstract aspects of a shape, however is less sensitive when comparing very thin shapes. Both
CD and EMD are from 2048 point samples, multiplied by 103 and 10−2 respectively.

The results indicate that implicit methods provide the best trade-off between various shape
types and works well on more detailed shapes, especially DISN [53]. 3DN [38] demonstrates
even better performance on detailed or thin shapes as the model can quickly find a very similar
pre-defined mesh structure matched to an input. Pixel2Mesh provides better performance and

Metric Model Yr. Type plane car chair lamp rifle sofa table

IoU

AtlasNet [57] ’18 Param. 39.2 22.0 25.7 21.3 45.3 27.9 23.3
Pixel2Mesh [34] ’18 Mesh 51.5 50.1 40.2 29.1 50.9 60.0 31.2
IM-NET [47] ’19 Impl. 55.4 74.5 52.2 29.6 52.3 64.1 45.0
OccNet [48] ’19 Impl. 54.7 73.1 50.2 37.0 45.8 67.1 50.6
DISN [53] ’19 Impl. 57.5 74.3 54.3 34.7 59.2 65.9 47.9
3DN [38] ’19 Mesh 54.3 59.4 34.4 35.4 57.6 60.7 31.3
PQ-NET [51] ’20 Impl. - - 67.3 39.6 - - 47.4
P. S. Gen. [42] ’17 Point cl. 60.1 83.1 54.4 46.2 60.4 70.8 60.6
Pix2Vox [17] ’19 Voxels 68.4 85.4 56.7 44.3 61.5 70.9 60.1

CD

AtlasNet [57] ’18 Param. 5.98 17.24 13.21 38.21 4.59 8.29 18.08
Pixel2Mesh [34] ’18 Mesh 6.10 13.45 11.13 31.41 4.51 6.54 15.61
IM-NET [47] ’19 Impl. 12.65 8.86 11.27 63.84 8.73 10.30 17.82
DISN [53] ’19 Impl. 9.96 5.39 7.71 25.76 5.58 9.16 13.59
3DN [38] ’19 Mesh 6.75 7.09 17.53 12.79 3.26 8.27 14.05

EMD

AtlasNet [57] ’18 Param. 3.39 3.72 3.86 5.29 3.35 3.14 3.98
Pixel2Mesh [34] ’18 Mesh 2.98 3.43 3.52 5.15 3.04 2.70 3.52
IM-NET [47] ’19 Impl. 2.90 2.73 3.01 5.85 2.65 2.71 3.39
DISN [53] ’19 Impl. 2.67 2.67 2.67 4.38 2.30 2.62 3.11
3DN [38] ’19 Mesh 3.30 3.28 4.45 3.99 2.78 3.31 3.94

Table 1: Models’ output shape quality of various object classes from ShapeNet dataset is compared using 3
evaluation metrics. Metrics: IoU- Intersection over Union (higher- better); CD- Chamfer’s Distance (lower-
better); EMD- Earth Mover’s Distance (lower-better). Data is either from DISN [53] or from original papers.
Representations of shapes during evaluation may differ (e.g. Voxel shape IoU for Pix2Vox [17] instead of mesh).
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smooth shapes when processing more simple and abstract shapes, such as a sofa or an airplane.
Both voxel and point cloud methods also provide great performance on most of the shapes.
However, their evaluation data on the provided metrics are limited. Pix2Vox [17] evaluation is
done on voxel shapes, not point sets or meshes, therefore potentially altering IoU score.

4.2 Qualitative comparison

Quantitative results alone cannot fully represent the quality of the reconstructed shape. This
section compares visual results. Figure 7 depicts examples of chairs reconstructed by advanced
models. The best visual results are obtained when reconstructing implicit shapes or mesh
shapes with iterative up-sampling and advanced topological capabilities. These models provide
superior detail in the reconstructed shape, return smooth and realistic surfaces, as well as
realistic topological features. Despite good quantitative results, point cloud models return
inaccurate, noisy and rough shapes. Parametric models return good abstract forms, but places,
where different parametric surfaces were ”stitched”, are clearly visible, reducing visual quality.
Initial mesh models, however, return poor quality due to their limited topological capabilities,
such as the inability to produce holes. The best mesh or implicit reconstruction models arguably
can provide equal or better visual performance than the best voxel or octree methods.

(a) Voxel (b) Mesh (c) Mesh (d) Point (e) Point (f) Impl. (g) Impl. (h) Impl. (i) Impl. (j) Param.

Figure 7: Examples of reconstructed chair using various types of representation. Images from: (a) - Pix2Vox
[17]; (b) - Topology Modification Networks [36]; (c) - 3DN [38]; (d) - Eff. point cloud gen. [43]; (e) - 3D-LMNet
[45]; (f) - OccNet [48]; (g) - DeepSDF [54]; (h) - DISN [53]; (i) - PQ-NET [51]; (j) - AtlasNet [57]

5 Summary & Conclusion

The research community has explored many ways to decode a 3D object from a single image
using deep learning since the inception of first methods and the adoption of a voxel output strat-
egy. Some of the applied methods have significant inherent advantages over voxel decoding and
provide a great alternative. Mesh reconstruction methods are allowing to reconstruct a shape
without a need for additional post-processing, the mesh structure itself is visualizable and widely
used. Such methods are expanded to up-sample the shape iteratively until the desired qual-
ity is reached. Another successful direction of research is implicit shape reconstruction. Such
methods allow unlimited resolution and recovery of complex topological features with superior
reconstruction quality. Other types of output methods, such as point clouds, can be applied to
some specialized domains due to other inherent advantages, such as quick reconstruction time
or low memory requirements. The reviewed methods of shape decoding eliminate some or all
voxel shape reconstruction drawbacks, providing either great alternatives for more specialized
domains or already producing a more superior quality of reconstruction. Regarding discussed
evidence, this review holds an optimistic view that further research will focus more on non-voxel
output strategies of single-view 3D deep learning methods and through further innovations will
provide substantial qualitative and quantitative reconstruction gains.
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Thomas Brox. What do single-view 3d reconstruction networks learn? In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3405–3414,
2019.

[9] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object reconstruction. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016,
pages 628–644, Cham, 2016. Springer International Publishing.

[10] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective trans-
former nets: Learning single-view 3d object reconstruction without 3d supervision. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 29, pages 1696–1704. Curran Associates, Inc.,
2016.

[11] Julian;Hendra Hendra Ham, Hanry;Wesley, Hanry Ham, Julian Wesley, and Hendra Hen-
dra. Computer vision based 3d reconstruction : A review. International Journal of Elec-
trical and Computer Engineering (IJECE), 9(4):2394, 2019.

[12] A. Yuniarti and N. Suciati. A review of deep learning techniques for 3d reconstruction of 2d
images. In 2019 12th International Conference on Information Communication Technology
and System (ICTS), pages 327–331, 2019.

11



[13] Jiansheng;He Qiwen;Zhang Hanxiao Fu, Kui;Peng. Single image 3d object reconstruction
based on deep learning: A review. In Multimedia Tools and Applications, volume 80, pages
463–498, 2021.

[14] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating networks:
Efficient convolutional architectures for high-resolution 3d outputs. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2088–2096, 2017.

[15] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[16] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a pre-
dictable and generative vector representation for objects. In Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 484–499,
Cham, 2016. Springer International Publishing.

[17] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping Zhang.
Pix2vox: Context-aware 3d reconstruction from single and multi-view images. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 2690–2698,
2019.

[18] Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jader-
berg, and Nicolas Heess. Unsupervised learning of 3d structure from images. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 29, pages 4996–5004. Curran Associates, Inc., 2016.

[19] M. Gadelha, S. Maji, and R. Wang. 3d shape induction from 2d views of multiple objects.
In 2017 International Conference on 3D Vision (3DV), pages 402–411, 2017.

[20] Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3d shape structure from a
single rgb image. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4521–4529, 2018.

[21] Weichao Shen, Yunde Jia, and Yuwei Wu. 3d shape reconstruction from images in the
frequency domain. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4471–4479, 2019.

[22] Rui Zhu, Hamed Kiani Galoogahi, Chaoyang Wang, and Simon Lucey. Rethinking re-
projection: Closing the loop for pose-aware shape reconstruction from a single image. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
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