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Abstract

Abstractive summarization refers to create a shorter version of the given text with the
same meaning, while rephrasing the sentences. Before the emergence of deep learning models
and pushing many datasets to the new state-of-the-art performance, traditional summariza-
tion methods were mainly based on the construction and application of semantic represen-
tation. However, these two methods are not independent of each other but could learn from
others’ strengths to offset one’s weakness. This work presents a comprehensive review of
the previous works from 2015 to 2020 in abstractive summarization via exploring the coa-
lescence of semantic graphs with deep learning models. Along with this, we identified three
benefits for combining semantic graphs with deep learning, and categorize the selected pa-
pers accordingly: 1) generate more meaningful and rich-content summaries, 2) improve the
readability and grammaticality for produced summaries, and 3) enhance the interpretability
of the end-to-end deep learning-based summarizers. Finally, we also list down the opening
challenges and discuss the potential future works in this direction.
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1 Introduction

Summarization is one of the most challenging tasks in the natural language processing (NLP)
field, which requires understanding and then generating the natural language. Summarization
is to let the machine rephrase the given text with a shorter version while remains the original
meaning and salient information. It greatly reduces the time and labor cost for a human to
write the summaries; thus being good for the efficient information browsing and querying in the
era of information explosion [1].

There were lots of works that have been investigated in summarization. In the classical NLP
research, the summarizing system was mainly built in a bottom-up fashion. Firstly, a semantic
parser produced the semantic representation for the document; then such linguistic illustration
would be fed into a summary generator [2]. In NLP, a semantic representation normally refers
to the scheme representing the meaning of the text [3]. It could be formal language simply,
e.g., the first-order logic, or structurally sophisticated such as a graph. Nowadays, the semantic
representations are normally designed with structural property (tree, graph, etc.), e.g., Ab-
stractive meaning representation (AMR) scheme utilizes directed acyclic graphs to represent
the sentential meaning, containing nodes (entities, attributes, etc.) and edges (parametric rela-
tionships). The solely semantic-based summarization was widely explored in early NLP works,
which mainly produces the desired summaries by extracting ontological and syntactic relations
in text. Recently, the deep learning-based methods such as sequence-to-sequence framework
(Seq2Seq) [4] has had groundbreaking performances and achieves state-of-the-art performance
on summarization task [5, 6, 7], due to the tremendous amount of labeled data, and large corpus
for training powerful language models [8].

In fact, semantic-based or deep learning methods have their shortcomings; however, they can
complement each other. The pure deep neural networks, like Seq2Seq, are widely criticized
for their black-box essence for information processing [9]: in understanding phase, the encoder
networks learn the feature representation as a flat vector for input sequence, and the decoder
produces the summary from the hidden features in generation phase. The flat vector is hard to
interpret and understand by a human; its capability for storing information is limited. Thus,
vector-based representation essentially brings the problem in explainability and efficiency in
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long-text processing. Comparatively, structured representation plays a crucial role in NLP as its
ability to capture particularly rich structural information [10]. The research in cognitive science
[11, 12, 13, 14] also revealed that the human cognitive procedure is highly reliant on the graphical
structure representation of information with compositions of entities and relations [11, 15],
which naturally motivates the researchers to consider involving the structured representation
to make the machine better understand language. Although the pure semantic-based methods
do not achieve comparable results with the deep learning approach [1], it inspired a feasible
way that incorporating semantic graphs into deep neural models [16]. Such combination has
three major benefits: 1) The explicit structured representation for text encoding improves
the interpretability of the deep learning (DL) model; 2) The semantic graphs usually entails
both semantic and syntactic information, which could guide the DL models to generate more
readable and grammatical summaries; 3) The semantic information and structural information,
i.e., explicit modeling of word dependencies, increase the content richness of the generated text
of DL models. On the other hand, traditional semantic graph-based generation tasks are difficult
to create lengthy and coherent summaries. Nevertheless, the strong language ability obtained
by the giant DL-based language models has been successfully applied in many summary tasks,
which could be a potential improvement for traditional semantic-based fashion [17]. In the end,
due to the rise of graph neural networks, it is possible for the neural architectures to process
the structured representation like the semantic graph in an end-to-end training [18, 19]. This
idea might further combine semantic graph information and deep learning models.

According to the approach for choosing the salient content and organizing the generated sum-
mary, summarization could be categorized into two approaches: 1) extractive and 2) abstrac-
tive. This paper will mainly introduce abstractive summarization because it is more difficult
and requires rephrasing the original meaning with new words not featured in the source text.
Comparatively, the extractive model is to turn the summarization task into marking the piece
of the original text to be extracted. Although the semantic graph might also benefit extraction
tasks; but compared to the abstractive one, extractive summarization is much easier thus hard
to show the advantage of combining DL and semantic representation.

In this paper, some selected summarization works with the improvement from the combina-
tion of structured semantic representation with deep learning models would be reviewed. We
mainly discussed the benefit(s) in the three aforementioned potential aspects for abstractive
summarization. We identify the opening challenges lying in the philosophy of coupling seman-
tic graphs with DL models and discussing future trends in this research area. To conclude, the
paper answer this core question: How the integration of semantic graphs and DL-based models
summarize abstractively better?

The paper is organized as follows: Section 2 describes the basic background for this field. In
Section 3.1, we introduced the first study in the feasibility of using semantic representations
to build the abstractive summarizer. This work did not use any powerful deep neural models;
however, noticeably, it was the first work that utilized semantic graphs for abstractive summa-
rization works. Then, we categorize each work by the aspect that they contributed in. Section
3.2 focuses on improving the content richness by the various approaches to merge semantic
graphs and deep neural nets. In 3.3, we reviewed the models generating more grammatical
and readable summaries by using the semantic graph to guide the neural models in the NLG
phase. The 3.4 will address the improvement regarding interpretability for DL-based summa-
rizers. Finally, we point out the challenges and future direction for new researchers and the
conclusion.
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2 Background

This section briefly introduced the background information for understanding this review, which
includes the introduction on baselines, datasets, and evaluation methods.

Classical Approaches & Baselines. According to [2], traditional abstractive summarization
methods could be classified as two categories: structure based method involving predefined prior
knowledge (e.g., rules, ontology, etc.) and semantic based methods (e.g., based on predicate
arguments and semantic graphs) [16, 17, 20, 21]. Recently, deep neural nets [6, 7, 22, 23, 24, 25]
have been widely employed in the abstractive summarization and they have since become the
state-of-the-art [1]. Especially, the encoder-decoder architectures with the attention mechanism
achieve promising results [26, 6] and compared as the baselines for many following works.

Summarization Datasets. There are many annotated datasets with the alignment between
original articles and their summaries, which are popular for the abstractive summarization.
One commonly experimented dataset is the CNN/Daily Mail [27] which contains online news
articles with multi-sentence human-written summaries as gold reference. The DUC 2004 (Doc-
ument Understanding Conference) dataset is also constructed by the news-summaries pairs like
CNN/DM. It contains 500 news articles with four human-written summaries per each article
as ground truth. Noticeably, the annotated summaries for CNN/DM and DUC 2004 are all
fully grammatical, and there might be more than one sentence in the ground-truth summary.
Comparatively, the ground-truth summaries could probably not be the full sentence, such as
the Gigaword [28] for the headline summarization [5]. It is also worth mentioning that some
datasets for semantic graph parsing provide human-written summaries for each article. These
datasets are also possible for summarization tasks, especially for the semantic-based text sum-
marization [17]. For example, the sample in the AMR Bank [29] dataset contain one paragraph
with a corresponding golden reference in both summary and AMR annotation.

Common Analysis & Evaluations. The most popular metrics for the automatic evaluation
for text summarization is the Recall-Oriented Understudy for Gisting Evaluation, or ROUGE
in short [30]. It is the fraction where the numerator counts words overlapping between the
generated summary and the ground truth. The denominator is the length of the gold reference.
Intuitively, higher ROUGE means the summary contains more same content in the ground
truth. The length of counting overlap could be different. For example, the ROUGE-1 (R-1)
counts the unigram (single word) overlap; instead, we could also consider the bigram overlap
named ROUGE-2 (R-2). The ROUGE-L (R-L) identifies longest co-occurring in sequence n-
grams [31]. To be noticed, ROUGE has limitations as evaluation in summarization. It only
counts the overlap of content, but the rephrasing in abstractive summarization might produce
the summary with same meaning but without many overlappings with ground truth. Thus,
most works in this area further use the human evaluation to assess the generated summary.
The criteria normally include informativeness, fluency, grammaticality, and so on [32].

3 Literature Review

3.1 The First Study: Toward Abstractive Summarization Using Semantic
Representations

Before the giant end-to-end training DL models dominate the summarization field, the pipeline
processing procedure was popular. In 2015, Liu et al. [17] firstly proposed an abstractive
summarization framework employing the AMR semantic Graph representation. This model
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Node
Features

Concept Identity feature for concept label
Depth Concept freq in the input sentence set; one binary feature defined for each frequency threshold τ = 0/1/2/5/10
Entity Two binary features indicating whether the concept is a named entity/date entity or not

Edge
Features

Label First and second most frequent edge labels between concepts; relative freq of each label, binarized by 3 thresholds
Freq Edge frequency (w/o label, non-expanded edges) in the document sentences; binarized using 5 frequency thresholds
Position Average and foremost position of sentences containing the edge (without label); binarized using 5 position thresholds

Table 1: Selected features functions for evaluating the score of subgraph prediction in [17]

composed three separate stages: 1) Source Graph Construction: a preprocessing step where
some rules were adopted to construct the source graph for the given document. 2) graph2graph
summarization stage: a trainable structural transformation were adopted to summarize the
source semantic graph into the summary graph; 3) graph2text generation stage: a text gener-
ator transformed the summary graph into text form. The authors especially focused on the
graph2graph stage by treating the summarization as a graph-level reduction or structured pre-
diction. Their experiments on the standard AMR bank [29] revealed that the summarizer based
on the graph-level structured prediction achieved 51.9 (using golden reference in AMR parsing),
51.2 (using JAMR parser, a state-of-the-art AMR parser [33]) on ROUGE-1 score. Compar-
atively, Oracle performance on ROUGE-1 was in the range of 89.1 when using gold-standard
AMR annotations and 87.5 for JAMR.

To construct document-level semantic graph based on sentence-level AMR graph [34], some
extra processing steps would be required. Firstly, they combined all coreferent nodes in the
sentential AMRs as one entity node in the source graph. Then, the sentence conjunction would
create a global ROOT node for the given document, and it connected all roots for the sentential
AMRs. In the last step, the graph expansion would add the extra edges to constructed a fully-
connected graph where all sentential roots are inter-connected. The authors assumed that the
most salient semantic information would be reserved and further support the summarization
after all preprocessing steps.

The authors treated the summarization as selecting a subgraph from the source graph, which
could be formulated as a structured prediction problem. The general objective was to reserve
the salient content while avoiding changing the meaning, keeping the representation concise.
Mathematically, they quantified a score for evaluating the predicted subgraph, with two terms
representing node score and edge score, respectively. Afterward, the weight parameters θ, φ
could be trained by maximizing this objective score using a gradient optimizer. The objective
is shown as followed,

score(V ′, E′; θ, φ) =
∑
v∈V ′

θT f(v) +
∑
e∈E′

φTg(e) (1)

where the (V ′, E′) formulated the predicted subgraph, and f(v) and g(e) denoted the hand-
engineering feature functions of node v and edge e, respectively. Part of the designed features
was listed in Table 3.1. Finally, an integer linear programming (ILP) was introduced to decode
the summary graph under some constraints ensuring the generated graph was valid. In this
decoding step, the θ and φ would be treated as constants, and the model searched and found
the best subgraph result. In the end-stage for generating summary, the authors produced a bag
of words as the output, constituted by the most frequently aligned word span for each concept
node in the summary graph.

To conclude, this paper conducted the first study and has inspired a new direction for sub-
sequent abstractive summarization research: using the semantic graph to better represent the
document’s meaning, thus improving the summarizers. Semantic graphs not only contain se-
mantic information which is beneficial for the summarization, but also structured information
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Automatic Eval. Human Eval. Improvement Contribution Application Training Fashion

AMRSum [17] (2015) R-1, prediction Acc. No - First Study NLU & NLG pipeline
AMR+TreeLSTM [36] (2016) R-1, R-2, R-L No Yes ROUGE AE NLU Pipeline

LinearAMR+Seq2Seq [37] (2018) R-1, R-2, R-L Yes Yes Fluency, Grammaticality NLU Pipeline
GuidedNLG [38] (2018) R-1, R-2, R-L Yes Yes Fluency, ROUGE AE NLG End-to-End

NEG+Seq2Seq [16] (2019) R-1, R-2, R-L No Yes ROUGE AE Pre-processing Pipeline
LG+Seq2Seq [16] (2019) R-1, R-2, R-L No Yes ROUGE AE Pre-processing Pipeline

GenParse [39] (2020) R-1, R-2, R-L Yes Yes Grammaticality, Richness, RAE NLG End-to-End

Table 2: Summary of the reviewed works. Improvement refers whether the method has some
improvements on previous works, with specific aspects in Contribution. ROUGE AE stands for
the ROUGE-based Auto Evaluation. Application indicates where to apply semantic graph in a
DL framework. Training Fashion shows how the model be trained as its design in the literature.

(both locally and globally) for the given document. The structured information in the graph
representation for text has also been demonstrated to help the deep neural model better capture
the latent dependencies among words, compared with the input only consisting of the token
sequence [32, 35]. Hence, it is reasonable to make the combination of semantic graphs and cur-
rent state-of-the-art neural summarizers. Based on this article, future work that can be done in
this direction includes 1) The hand-engineering features in Table Table 3.1 for calculating the
scores might be further replaced by the automatically learned features via end-to-end trainable
machine learning algorithms; 2) The simple linear model could be further improved by a more
complex one, e.g., the deep neural networks with powerful expressive capability. 3) this article
did not generate a summary that follows natural language grammar but a bag of words instead,
which could be further improved by a powerful neural networks-based language model.

3.2 Improvement in the Quality of Summary

Unlike image or text, semantic graphs are generally expressed as graph structures or stored with
a structured scheme. Hence, the semantic graph could not be directly merged and computed
by neural networks to serve the summarization. The majority of past related works focused
on finding a way to corporate the semantic graph information into a neural architecture, with
the maximum utilization of both semantic and structural information to generate high-quality
summaries. In this section, we mainly discussed the papers focusing on exploring those various
information fusion approaches to cope with the multi-modality problem of semantic graph data,
thus leading to improve the quality and informativeness of the generated summary. We list the
performance reported in each reviewed literature in Table 3.2.

One way of thinking is to modify the input layer of the neural networks to fit with the graph
structure data, just like we design 2D convolutional networks for image data and recurrent
neural networks for sequence data. Inspired by previous structured neural networks (e.g., tree
structure neural networks [40]), [36] utilized the tree-LSTM to directly encode the AMR graph
into neural model as shown in Figure 1 (a). Specifically, based on the traditional encoder-
decoder architecture, in addition to the encoder for encoding token sequence, they designed
an AMR encoder. This AMR encoder was a tree neural networks which could encode nodes
(concept) and edges (relationship) in AMR graph, and generated a fixed-length encoding vector
to represent the output of the AMR parser. The prediction distribution with such information
fusion mechanism y could be formulated as,

p(yi+1|X,YC,i) ∝ exp(LM(YC,i) + encDOC(X,YC,i) + encAMR(A,YC,i)) (2)

where the LM , encDOC and encAMR were the language model, RNN encoder with attention
for the sentence and the tree encoder for the AMR, respectively. X,Y represented the aligned

5



(a) (b) (c)

Figure 1: Illustrations for three discussed models: (a) ABS+AMR [36]; (b) linearization and
anonymization for AMR [37]; (c): Taxonomy based concept generalization [16]

pair of the indicator vectors that indexing the appearing words in the original sentence and
summarized headline, where |Y| < |X|. Specially, the subscript of C, i denoted the sub-sequence
in Y from yi−C+1 to yi. Matrix A represented the list of hidden states aj for all node j in
the AMR graph. Finally, the results on DUC-2004 and Gigaword datasets shown the benefit
of incorporating AMR in such a mechanism with an improvement of around 0.5 in terms of
ROUGE-1 (R-1), R-2, and R-L, which proved the contribution of AMR (AMR+ABS) [36] on
pure DL-based model (ABS) [5].

Apart from modifying the neural architecture, some semantic graph (e.g., AMR) provides the
analytical method for linearizing, i.e., converting the graph representation into a canonical se-
quence representation via a close-form solution. In 2018, [37] proposed to integrate AMR graph
by linearizing the graph into sequential data (Depicted in Figure 1(b)). Similar to [17], some
preprocessing was done to convert the original AMR into document level. Firstly, the author
adopted the linearization and anonymization following [41], so that the concept corresponding
to the same entity across the article was assigned the same anonymization token and generated a
dictionary representation. After the preprocessing, the authors adopt the conventional Seq2Seq
model with the attention mechanism to produce the summary following a standard supervised
learning fashion. The input and output sequence for t−th document would be It = [a0, a1, ..., an]
and O′t = [s0, s1, ..., sm], where the aj and sj were tokenized linearized AMR and summarized
tokens, respectively. Same with the common consideration in abstractive summarization tasks,
they also employed the coverage method proposed by [6] in the decoder’s generation. They
also provided a post-processing step in which the dictionary’s corresponding entity replaced
the anonymous tokens. The experiment results revealed that the full model outperformed the
baseline [6] in both ROUGE-based automatic evaluation and human evaluation in terms of
meaningful richness, fluency, and grammaticality. It showed that the AMR semantic graph
could make a positive contribution to summarization tasks. Moreover, the semantic graph’s
linearizing is a computationally efficient and effective approach for integrating the information
from the semantic graph to neural summarizers.

The aforementioned methods directly treated the semantic graphs as the input for the neu-
ral model. However, the hierarchical information in some semantic graph can also be used to
preprocess the text, e.g., content generalization. In 2019, [16] proposed a novel text general-
ization framework by utilizing the semantic and hierarchical structural information in concept
taxonomy as shown in Figure 1(c). The intuition behind was based on the frequency of tokens:
because the machine learning systems normally requires a large number of training samples to
perform the predictions accurately, it was reasonable to consider replacing the low-frequency

6



CNN/DM DUC-2004 Gigaword

Method R-1 F-score R-2 F-score R-L F-score R-1 R-2 R-L R-1 R-2 R-L

AMR+TreeLSTM (2016) [36] - - - 28.8 7.83 23.62 31.64 12.94 28.54

LinearAMR+Seq2Seq (2018) [37] 38.15 17.87 34.84 - - - - - -

NEG+Seq2Seq (2019) [16] - - - 28.73 9.87 26.12 46.3 23.88 43.94

LG+Seq2Seq (2019) [16] - - - 28.89 10.1 24.46 46.34 24.02 43.65

Baselines

PGN+Cov (2017) [6] 39.53 17.28 36.38 †27.56 †8.9 †25.2 †44.35 †22.43 †41.87

ABS (2015) [5] - - - 26.55 7.06 22.05 30.88 12.22 27.77

Table 3: Dominant comparison among discussed models with various approaches to merge
structured semantic representation with deep learning methods. †: the results of PGN+Cov
model on DUC-2004 and Gigaword datasets are reported by [16].

words or tokens with their generalized token, i.e., hypernym (for example, in Figure 1(c), fruit
is the hypernym of banana). They proposed two strategies of generalization. The first one was
the generalization for the name entities (NEG) in which the named entities would be replaced by
their hypernym in the entities set. For instance, given the sentence ”Anbul lives in Liverpool.”
would be generalized into ” Person lives in location ”, if the entities set were simply defined as
E = {person, location}. The second strategy utilized the hierarchical structural information in
the word taxonomy graph, namely level generalization (LG). A hyperparameter d determined
the generalized degree, which determined each concept node’s generalization strength, expressed
as the depth of the taxonomy tree. For example, if d = 2, the sentence ”banana is delicious”
might be generalized by ”fruit is delicious”. After the generalization, the generalized text would
be summarized by the classical Seq2Seq with attention model [6]. Similar to [37], as the input
sequence has been changed. There was a need to do the post-processing on the predicted sum-
mary to transform the generalized tokens back to more specific entities as the final prediction.
The experiments on Gigaword [28] demonstrated the effectiveness of this semantic-based gener-
alization, with the improvement at around 2 on R-1, R-2 and R-L evaluation compared with the
baseline [6]. The comparison on DUC 2004 [42] showed that the DL model with semantic-based
generalization also outperformed the baseline with pure deep learning method [5], and achieved
the comparable performance with the state-of-the-art method [43] on R-2 and R-L metrics.

In conclusion, the semantic graph could improve the pure neural nets-based summarizers such
as [6, 5] in terms of ROUGE-based evaluation. The sampled case studies in [36, 16] also
manifested such consolidation of semantic graphs with neural summarizers help to improve
the informativeness and meaningness of generated summaries. Nevertheless, the comparison
among all discussed models reveals that there is still an open-end question for finding a more
efficient approach to inject the semantic graph into a sophisticated neural system. The previous
works [37, 36] attempted to combine them via an end-to-end fashion; however, their ROUGE
performances were not as comparable as simply using the hierarchical semantic information to
generalize the text in preprocessing as shown in Table 3.2. Unfortunately, both [36] and [16]
did not perform the human evaluation in meaningfulness, fluency, and grammar compliance
like [37], the manual analysis and comparison in the summaries generated by the non-semantic
model and semantic model might need to be further investigated.

3.3 More Readable and Fluent

Since the structured meaning representation usually contains the semantic meaning and entails
syntactic information, previous studies attempted to use the semantic graph to guide the gen-
eration of summaries to be more readable and grammatical. In this section, we briefly reviewed
the papers placing their contribution on the generation phase.
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(a) (b)

Figure 2: Illustration for the decoding of the GenParse model in [39].

As aforementioned, [17] utilized the heuristic approach in the summary generation step. Their
summary generator simply generated bags of words that were not readable and following any
natural language grammar. To improve the readability of generated summary, [38] further
adopted the DL model (Seq2Seq with attention) to serve as the generator. They explored two
methods to design the generator. The first one was the unguided generation from AMR, which
simply linearized the summary graph G′ from [17]. Then the Seq2Seq model would learn by
the traditional supervised manners. The first method was similar with [37], but linearizing the
summary graph instead of the original AMR representation for a given document. The second
one was to adopt AMR to guide the language generation for the Seq2Seq model. The author
selected top k sentences with highest similarity with the AMR graph, which was calculated by
the longest common subsequence between the linearized version of two graphs. The pruned doc-
ument with k selected sentences was defined as side information. Subsequently, an interpolated
tri-gram language model would be estimated by Maximum Likelihood on the side information,

Pside(xj |xj−1j−3) = λ3PLM (xj |xj−1j−3) + λ2PLM (xj |xj−1j−2) + λ1PLM (xj |xj−1) (3)

where the interpolated hyperparameters λi is tuned in development set. The PLM denotes
a basis trigram language model estimated on the pruned documents. Finally, the predictive
unnormalized score to generate summary was formulated as,

score = logPs2s(yj |y<j , z) + Φ ∗ log(
Pside(yj |y<j , z)
Ps2s(yj |y<j , z)

+ 1) (4)

where Φ was the hyperparameter to control the strength of AMR guidance in NLG. Ps2s was
the predictive distribution in the unguided generation. z was the hidden representation in the
encoder-decoder architecture. Their experiments and the performance comparison with [17]
revealed that the guided NLG outperformed the unguided NLG with a considerable margin.
The Guided NLG achieved 70.7 and 64.9 in R-1 and R-2 figures, while the unguided model only
had 68.6 and 61.3, respectively. More importantly, the guided generation achieved a 2.66/6.00
score in the human evaluation regarding fluency, which is determined by whether the sentences
were grammatical and natural. Comparatively, the unguided generation only earned 2.16 in
this test. However, the author also pointed out the grammatical mistakes and repetition are
still a severe problem.

To tackle the grammatical incorrection problem in the generated summary for the current neu-
ral model. [39] suggested to consider adding a syntactic or semantic decoder in the language
generation phase. The decoder would perform either syntactic or semantic parsing together
with the original decoder to generate the summary rather than only served as the summary
generator in previous studies. Although the author used the syntactic decoder in this paper’s
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experiments, they also pointed out that since the semantic representation often entails gram-
matical information, it was feasible to replace the decoder with a semantic-oriented one. In
details, the authors converted the language generation tasks into sequence prediction for the ac-
tion set yτt = {REDUCE−L,REDUCE−R,GEN}. REDUCE−L and REDUCE−R were
reducing actions in the standard shift-reduce parsing framework. Specifically, the GEN were
the action to generate token as summary, and added the new token into the stack that stored
the tokens waiting for parsing. One example for inference stage to generate summary sentence
”a man escaped from prison” was shown in Figure 2(b). The joint objective for training could
be formulated by,

logP (yτ |x) = [
∑
t

logP (ỹτt = o|ỹτ<t,x)]︸ ︷︷ ︸
Parsing

+ [
∑

t:ot=GEN

logP (yτt = w|yτ<t,x)]︸ ︷︷ ︸
Summarization

(5)

where first term represented the log-likelihood to be maximized for the parsing task, and the
second term was for the summarization tasks. The yτ,x denoted the input and target sequence
pair in one training sample. ỹt was the predictive action of the model in t − th step. o de-
notes the predictive action in a previously defined action set, and w was the generated word
token. The convincing experiment results on four datasets, including Gigaword, NewsRoom,
CNN/DM and WebMerge demonstrated their GenSUM model significantly improved the base-
line’s performance [6] on the auto evaluation via R-1, R-2 and R-L. In the human evaluation
for grammaticality and meaningfulness, unlike previous work that only required human referees
to score the summaries, this work introduced a competition mechanism for compared models,
i.e., the human referee needed to rank the summaries generated by varied models (including
humans). Among them, in terms of grammaticality, 12.7% referees believed that the GenParse
model ranked first, which is 7.6 percent above the baseline. And, 42.4% of people ranked the
summaries generated by GenParse in the second place among all models. Such convincing re-
sults suggested that the syntactic and semantic information could be useful for the NLG decoder
to generate a readable and grammatical summary.

3.4 More Interpretable

Although deep learning models have achieved significantly better performance than traditional
models on many complex NLP tasks, its black-box essence is still widely criticized. Especially
on NLP tasks, although end-to-end data-driven systems can achieve state-of-the-art perfor-
mance on tasks that require ”understanding” such as text summarization and machine reading
comprehension, DL-based models are still far from ”understanding” of natural language [44].
One of the advantages of the semantic graph is its nice property in structured representation.
Compared with flat vectors in the end-to-end DL models, it is easier for humans to understand.
Therefore, understanding the learned ”knowledge” by the structured representation of deep
learning models becomes a research trend in the NLP community recently [1]. In this section,
we discuss improving the interpretability of the end-to-end model by introducing structured
representation for semantic relationships.

In 2020, [45] proposed the first end-to-end neural framework for downstream NLP tasks with
the direct generation of a concept graph at the middle. The concept map is a structured se-
mantic representation whose nodes are the concepts and the edge, indicating an interaction
between two concepts. The architecture for doc2graph is shown in Figure 3(a). The networks
computed the representation for the concept embedding and interactions in parallel. To com-
pute the embedding for the concept, a Long Short Term Memory networks with attention was
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(a) (b)

Figure 3: (a): Illustration for the doc2graph model [45], which generates concept map g inside
the end-to-end framework. (b): Case study for the generated summary, and comparison for the
visualization for the generated concept map with existing models.

introduced. The basic idea for generating concepts was the same as standard text embedding.
The interactions embedding was more interesting, as it involved the challenge of converting text
into graphs which were different data type. To make the graph generation fully differentiable
in end-to-end framework, the concept graph would be defined as a symmetric adjacent matrix
A where each element Ai,j was the probability to connect concept i and j. Thus the matrix
generation could be modeled by a two-layer feed-forward network, and the interaction vector a
for each node (concept) would be,

a = σ(W(2)
m ReLU(W(1)

m h + b(1)
m ) + b(2)

m ) (6)

where Wm,bm were trainable parameters, and superscript (j) indicated the parameters for
j− th layer. σ was the sigmoid function that constrained the output to be in the range (0, 1) as
a probability. The model was trained in an end-to-end fashion, and the loss was specified by the
downstream task. The case studied in Figure 3(b) showed that compared with other text-to-
graph algorithms, the graph representation generated by the text2graph model contains more
accurate concept and meaningful interaction links. Although the author did not experiment on
the summary task, the NYT dataset [46] used in this work was also a commonly used annotated
dataset in the summarization [6]. They also pointed out that it was possible and easy to migrate
the framework to other downstream tasks like summarization.

To conclude, this article proposes using intermediate structured semantic representations to
enhance the interpretability of deep learning models in NLP. Although it does not use the
external semantic graph to enhance the model as in the previous works, through the learning of
downstream tasks, the summarizer following this framework could not only generate a summary,
but also a semantic graph which can explicitly show humans the important information that the
summarizer learned for the text. However, in the experiments, the authors did not introduce
the analysis and human evaluation for the generated semantic graph. More research on the
explainable deep neural networks for NLP is still worthy of further exploration.
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4 Conclusion & Future Work

The previous studies made progress on improving the abstractive summarization by combining
the semantic graph with deep learning models in many aspects. However, there a many open
research questions which are yet to be solved. We list a few of them as followed,

• Need of more efficient approach to integrating semantic graph into neural
architecture. Although the semantic graph enhances the performance of summarizers
solely based on neural network systems. However, the most effective way to incorporate
semantic graph information is still to use it to generalize the text in the preprocessing
stage. The comparison among reviewed models in Table 3.2 shows that the generaliza-
tion [16] perform better than methods that direct integrates the semantic graph into the
end-to-end architecture on many datasets. Therefore, there is still a need to find a bet-
ter design incorporating the semantic graph information while remaining the end-to-end
property. The new-coming graph neural networks [47, 48] attracts much interest in the
NLP community might empower the utilization of language graph data, e.g., semantic
graph, in the deep learning-based NLP model.

• Need of good human evaluation frameworks. The main automatic evaluation met-
rics for summarization is ROUGE. Still, its shortcomings are obvious: its calculation
depends on the word overlapping between generated summary with ground truth, which
is especially limited for evaluating the abstractive summarizers that are required the abil-
ity to rephrase. Therefore, a lot of work in the past introduced human evaluation to
judge the generated summary quality. However, there is currently no general prototype
for human evaluation in abstractive summarization. Moreover, the existing evaluations
could not specifically identify the semantic graph’s contribution, thus better interpret-
ing the role of semantic graphs in the performance improvement. Future work includes
developing standard evaluation frameworks, e.g., more specific criteria for analyzing the
improvement by adding semantic graphs into neural models.

Abstractive summarization is an interesting but difficult task involving both NLU and NLG
to generate fluent, non-redundant, and informative summaries. It has attracted much interest
among the community in recent years with the rise of deep neural networks and tremendous lan-
guage data. This paper aims to present the recent progress in applying the structured semantic
representation, especially in graph, to improve the neural networks-based abstractive summa-
rization. The past studies revealed that both the solely-semantic-based summarizers and the
deep learning-based summarizers have their shortcomings. However, these two schools are not
independent but can be combined to complement each other. Specifically, we reviewed relevant
literature in the past five years (2015-2020). We found that DL-based language models help the
solely-semantic-based summarizer [17] to generate more readable summaries [38]. Interestingly,
the semantic information of the semantic graph also helps the summarizer to generate a more
meaningful and grammatical summary [39]. Besides, semantic graph enables deep learning
models to capture salient semantic information better, thereby generating a more content-rich
summary and achieved higher performance in both automatic and human evaluation [36, 37, 16].
At the same time, the structured property of the semantic graph also enhances the explainabil-
ity of the deep learning model [45]. Future works include merging the semantic graph with
current state-of-the-art neural models more efficiently and finding a better evaluation method
to analyze the contribution of the semantic graph in abstractive summarization.
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