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Abstract

The recent success of deep learning models in identifying and segmenting features from
images has drawn academic interest in utilizing those models in medical applications. An
area of high mortality rate that uses medical imaging to perform diagnosis is Intracranial
haemorrhaging (ICH). The identification of ICH is done visually by radiologists to identify
areas on CT scan slice of characteristic white lesions. Fully convolutional networks are a
subset of deep learning that can highlight areas of interest. This paper will investigate the
current literature that uses fully convolutional networks to segment ICH pathologies.
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1 Introduction

The consequences of brain hemorrhaging (a.k.a intracranial hemorrhaging - ICH) serve to be
a morbid reminder of the sensitivity of the brain to any affliction. They occur as a result of
internal bleeding, putting pressure onto the brain and depriving it of oxygen. What follows is
cellular death.

Worldwide it affects roughly 25 out of 100,000 individuals with a mortality rate up to 52%
occuring within the first month [1]. Around half of the mortality occurs within the first 24h.
Only 20% diagnosed are expected to make a full recovery. Due to the time sensitive nature of the
problem an early and accurate diagnosis is necessary to expediate the process of administering
the correct treatment. The current process for providing a diagnosis, requires an initial analysis
followed by a CT scan, which has to be followed up by a diagnosis from a radiologist. The
presence of ICH on a CT scans can range from very obvious to virtually imperceptible and is
heavily dependent on the ability and experience of a radiologists to detect them. Thus this
area is heavily suited for an automated solution that can both cut down on time needed for a
diagnosis but also mitigate the effects of human error. Such a solution would not only have the
capacity to save additional lives but also free up hospital resources.

In recent years there have been developments in research to develop AI models that can ac-
curately classify CT scan images for the presence of hemorrhaging [2]. The most significant
development has been achieved by utilising a subset of Deep Learning, known as convolutional
neural networks [3]. It comes at little surprise that this technique has found success within med-
ical imaging, considering that CNNs were originally successfully applied in image classification.
Furthermore, the National Institute for Health and Care Excellence, (NICE) a public body in
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the UK that publishes health related guidelines, has released a document recommending 6 AI
software packages from various companies, where every single one uses deep learning as a basis
for creating their models [4].

The aim of this paper is to survey the current publicly available research for classifying CT scans
of ICH with the help of deep learning. In doing so it aims to answer the following questions:

1. What is the current state of the art in ICH detection and segmentation?

2. How do the various technologies differ and how does that affect classification?

3. What does the future hold for this technology?

Before continuing to the background section it is important to qualify the specific choice and
scope of the topic. Head scans can be executed by either an MRI machine or a CT scanner.
Although MRI scans tend to produce more accurate images of the target area, CT scans are
more ubiquitous and comparatively cheaper, which lends itself to providing more data [5]. It is
also faster in producing an image than an MRI, which is crucial in time-sensitive problems like
ICH.

2 Background

The following section will delineate the necessary techniques in understanding deep learning
and its various subsets that are necessary to understand current ICH model solutions.

2.1 Deep Learning

The origins of machine learning theory can be dated back to the 1950s along with Alan Turing’s
proposal of a ”learning machine” [6]. Since then the field has seen significant academic interest
with various theoretical breakthroughs. Only recently however, as a result of the development
and ubiquity of computational power and the access to a vast amount of training data, did
machine learning see practical and commercial success.

Though many different techniques fall under the umbrella term of machine learning, the common
denominator in most approaches is access to representational data pertinent to a given use case,
as well as a predefined metric, which will use said data to define our model. In the case of
deep learning, the topology of the model takes inspiration from biological underpinnings in the
structure of neural pathways in brains, insofar that it is defined by layers of interconnected nodes
that propagate incoming data to produce a desired output. The following will be a description
of a standard fully connected network. It is important to preface that the current state of the
art methods no longer utilize a fully connected model due to limitations that shall be described
in section 2.1.2. However, concepts introduced by this architecture are pertinent to models that
are currently in use.

2.1.1 Fully Connected Network

When designing a model using a fully connected network architecture for a CT scan classification
problem, one could imagine the input to the network being a vector representation of a CT scan
image. Each pixel is a separate feature in the input vector corresponding to a specific greyscale
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value. An additional step of normalization is required to limit the scope of the value in each
feature, for example by changing the range from [0, 255] to [0, 1]. Without this normalization,
pixels with higher greyscale values will be perceived as more significant simply due to the
intensity of the color.

The input vector x̂ = [x1, x2, ...xn] represents the input layer of the network with each fea-
ture consisting of a weight that connects it with every node in the subsequent layer ŵi =
[wi1, wi2, ...win]. The values of these weights will be adjusted during the learning process in
order to identify the salient features that will allow for accurate classification. Each node in
the subsequent layer takes the weighted sum of each node in the preceding layer, as well as
applying a bias and an activation function. The application of an activation function ensures
that our model can represent the data non-linearly. There is a substantial amount of literature
dedicated to exploring various types of activation functions such as RELU, Tanh and sigmoid
[7]. The bias is simply an additional parameter that allows the activation function to be shifted.
The formula for the output of a given node would look as follows:

ŷ = g(x̂ · ŵ + b) (1)

Where g is the activation function and b is the bias.

Once the inputs have been propagated through the hidden layer, they reach the output layer
where the decision for classification is made. In the particular use-case of CT scan analysis, it
can be a simple binary choice regarding the presence or lack of haemorrhaging, represented by
a single output node in the output layer. A sigmoid activation function normalizes the value
between 0 and 1, allowing it to be treated as a confidence metric. Values greater than 0.5 will be
classified as positive (presence of haemorrhaging), otherwise it will be classified as negative (no
presence of haemorrhaging). It also possible to create an output of multi-class classification, in
this case the number of output layers will be determined by the sub-regions of the brain where
haemorrhaging may be present. For a multi-class classification problem, softmax is applied as
an activation function and the highest value will be set as the classification for a given input.

Random initialisation of the parameters of the model virtually guarantees that all initial clas-
sification will be inaccurate. Training of the weights and biases of the model can be performed
through stochastic gradient descent [8]. For classification tasks the training data is a pairwise
combination of ICH scans and their respective correct classification, which have been assigned
by radiologists. By comparing the values of the correct classification and the predicted value
an error function can be generated on the basis of which, the parameters can be iteratively
adjusted to improve overall classification accuracy. By taking the gradient of the error function,
the algorithm backpropagates through the model to minimize the overall error.

2.1.2 Convolutional Neural Networks

CNNs were practically applied for the first time in 1989, through the identification of handwrit-
ten zip code digits [9]. However its true impact on image classification arose after the success
of the AlexNet on the ImageNet dataset [10]. The relative success of CNNs in these tasks has
seen to their application in ICH detection.

The comparative improvement in performance of CNNs against fully connected network models
can be attributed to the architecturally embedded, learnt feature extraction and regularization.
Overfitting is more prominent on fully connected networks due to over-parameterization. A
single image may contain 100,000s of features that are densely connected with the nodes of
the subsequent layer. The significant number of trained parameters will negatively impact the
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overall generalizability of the model.

Instead of a web of densely connected layers, CNNs use kernels that identify the presence or
lack of specific patterns within feature maps. In a typical CT scan image, radiologist pinpoint
haemorrhaging by the presence of lighter patches. The model may train the kernels to be
sensitive horizontal or vertical arrangement of data, where there is a sudden jump in the pixel
value of a group of features. Abstracting this concept further, once the model identifies these
borders it can then check if their arrangement warrants a positive classification in the latter
layers. In many CNN architectures it is common to see the placement of a few fully connected
layers at the tail-end of the network, to potentially learn non-linear combinations of extracted
low-level features.

One final important element of CNNs in feature extraction is downsampling, where the height
and the width of the feature maps are halved whenever they are passed through pooling layers.
This step is necessary as it makes identification of haemorrhaging more invariant to positional
changes.

2.1.3 Fully Convolutional Neural Networks

From a practical point of view, it can be reasonable to expect that regardless of how well deep
learning models classify an image, a radiologist will still be needed to provide a final diagnosis.
A confirmation of the presence of ICH by a model, would still require identifying the suspected
area. In the worst case scenario, erroneous prediction could lead to wasted time or wrongful
diagnosis.

Semantic segmentation offers a solution to the above problem. Instead of assigning a classifi-
cation label to an entire image, each feature or pixel of the original image is assigned a class.
The final output returns the original image with highlighted areas where the model suspects the
presence of haemorrhaging. The elimination of ambiguity regarding where the model detected
the pathology will accommodate the verification process for a radiologist.

This process is achieved through a fully convolutional architecture [11]. In CNNs the height
and width of the features gets downsampled as it passes through convolutional blocks and
pooling layers, ending with a few fully connected layers before the final output layer. Since the
final output needs to be the same dimensionality as the input, the fully connected layers are
replaced with upsampling convolutional layers, making the entire network ”fully convolutional”.
Downsampling is necessary in the architecture, for both computational efficiency as well as for
feature positional invariance. The detriment of that is the loss of information as dimensionality
is reduced. Fully convolutional layers circumvent this problem by summing the upsampled
feature maps with previous layers at various stages of downsampling.

A slight disadvantage of fully convolutional networks when compared to CNNs, is the require-
ment to provide explicitly drawn ground truths for each image.

2.2 Computer Tomography and Imaging

The field of research regarding image segmentation ICH scans has seen significant interest with
a considerable number of papers being published yearly from various institutions beginning in
2009 with automatic segmentation technique [13]. Prominence of deep learning began in 2017,
with the successful application of LeNet, googLeNet and Inception-ResNet in ICH detection
tasks [14]. Though extensive research was performed in many subsets of artificial intelligence,
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Figure 1: Image taken from the cascaded deep learning for ICH detection/segmentation paper
[12]. The leftmost images are the inputs, the middle images are the ground truths annotated by
radiologists and the rightmost images are the predicted segmentation masks, with color-coded
class predictions.

such as fuzzy C-means and superpixels. The vast majority of recent research was primarily
orientated around convolutional and fully convolutional neural networks [15].

3 Literature Review

3.1 Patch Fully Convolutional Networks

A paper published by the University of Berkeley offers a patched based approach in analysing
CT scan data called PatchFCN [16]. In most cases, an entire image would be provided as input
to a convoluntional network. A patch based approach subdivides the CT scan images of 512x512
pixels into seperate patches of size 240x240 pixels, with the possibility of overlap. The formula

provided by the paper for the number of patches is N =
[
βH
C

]2
, where β is the overlap value

(set at 3 during test time), H is the input image size and C is the patch size. One problem
with overlapping is that the same pixel will receive multiple predictions. This is circumvented
by taking an average of each score they receive.

The paper provides several justification as to why a PatchFCN approach will net better results
than a vanilla FCN. First of all, they argue that the full context of a CT scan is not necessary
to make a valid prediction, as most pathologies if present are concentrated within subregions.
Furthermore, the architectural implicit restriction of only obtaining local information, could
have a regularization effect. Another justification is that the smaller sized patches allow for
greater batch-sizes, leading to increased stabilization during training. Finally they argue that a
standard FCN would be more prone to capturing long-range dependencies, which can be prone
to overfitting due to the limited amount of available training data. The paper also provides
empirical evidence of the better performance of PatchFCN, demonstrating better Dice, Jaccard,
Pixel AP and Frame AP scores. It is worth mentioning that PatchFCN does have a significant
advantage of higher batch size and the number of epochs, which could explain its relative
performance. One final important element of the architecture is that utilizes two distinct models
for detection and segmentation. Detection for classifying it as positive for haemorrhaging and
segmentation for highlighting suspected pixels.

The issue of access to a significant amount of data is unfortunately a common thread in most
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papers done in this domain and most likely heavily informed the decision of this particular
architecture. Such data is primarily obtained from a few institutions and require specialists for
labelling and constructing ground truths. This paper had access to 591 head CT scans with
a trainval/test split of 443/148 obtained from 4 separate CT scanners. Labelling and ground
truths were done by certified neuroradiologists with a minimum of 10 years of experience.

The paper conducted restrospective and prospective validations of the model. Retrospective
validation was done on the test data and achieved an AUC score 0.976. Prospective validation
was done upon additionally collected 200 head CT scans once the training of the model was
completed and achieved an AUC score of 0.966. Although the paper does state that the model
was trained on all the various subtypes of acute intracranial haemorrhaging, they do not provide
a breakdown of the final score on each subtype. The omission of those results may be resultant
from the small amount of data available.

Another lacking element of the paper is the omission of quantitative distinction with regards
to different sizes of intracranial haemorrhaging. It can be expected that a model trained for
a segmentation task would be more effective at identifying pathologies that are more present
within a scan compared to near-imperceptible ones. Providing separate AUC scores could have
better informed the reader as to the merits of this model. Unfortunately near-imperceptible
traumas are far less common to be detected and included in labelling of a CT scan, compounded
with an already small dataset, may have resulted in the analytical exclusion.

The AUC score achieved by this model is comparable but does not quite beat the score of the
state-of-the-art detection model [17] (at that point in time) as well as the score of the radiologist
who was brought in, as a comparative benchmark. However, it is important to note that the
model still achieved an impressive score considering the limits of accessible data. Nearly 11,000
CT scans for the state-of-the-art compared to 591 scans for this paper. Although this model
does not beat the current best scores it does provide a framework for other research where
access to data is a significant impediment.

The differences in available data could have been the deciding factor in the final score of each
model and it does not necessarily reflect the true quality PatchFCN. This was later demonstrated
to be the case by the followup paper done by the same group of researchers [18].

A few notable changes were done to the original PatchFCN study. The architecture was en-
hanced by adding two additional inputs to the network of patches relatively superior and inferior
to the main patch. This approach is also done by radiologists who look and antecedent and sub-
sequent slices of the main slice of interest. Although it may seem a bit unintuitive to add more
information to the network, the decision to do so becomes clearer when taking into account the
limitations of CT scans, which can be prone to producing a fuzzy image or generate artefacts
that can be misinterpreted as ICH. Haemorrhaging is fluid and can be present on multiple slices,
so providing a more 3d oriented picture of a given patch allows the model to better discriminate
between artefacting and actual ICH.

Another notable change is the increase in available CT scan data, increasing from 591 to 4,396.
The paper also provides exact positive-negative split of training and test data in tables as well
as the performance of the model in detecting haemorrhaging in the various subtypes of the
brain. Both of these things were missing in the earlier paper. Additionally the paper seems to
be more thorough in both delineating the parameters and structure of their model as well as
providing more pertinent figures.

One final important change is increasing the number of specialists against, which the model was
benchmarked from 1 to 4. The model managed to beat the result of two specialists and achieved
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a receiver operating characteristic (ROC) area under the curve (AUC) of 0.991. Beating the
previous result of 0.976 and establishing the best result of any detection model to that point.

The researches did not mention whether they ran the older version of the PatchFCN on the new
dataset, providing difficulty in ascertaining whether the improvement in the final score came
from the increase in available training data, the addition of superior or inferior patches to the
network input or the various more subtle structural changes to the architecture itself.

3.2 Ensemble Model with Windowing and Image Interpolation

Another proposed method for ICH detection and segmentation also attempts to address the
problem with small datasets like in PatchFCN [19]. The dataset size in this particular study
is 904 CT Head scans. The paper discussed testing several model pre-trained on ImageNet for
the detection part of their architecture and provided the results for each. These models were
VGG16, ResNet-508, Inception-v39 and Inception-ResNet-v2. Interestingly they achieved the
best result by combining all the models into one ensemble and by taking an average of each
models final decision score, similar in nature to a Random Forest model that takes the highest
voted decision from an amalgamation of different decision trees.

In directly addressing the problems related to the small dataset, the paper provides two essential
solutions, both of them related to data augmentation. The first relates to creating a feature map
containing three channels of the same slice with different Window Widths (WW) and Window
Levels (WL). A CT slice gets generated at various levels of radiation, this is necessary as different
elements of head require various levels of radiation to penetrate, i.e. the skull needs relatively
high levels of radiation to penetrate followed by moderate levels for blood (haemorraghing) and
low for brain tissue. The intensity of radiation is given by Hounsfield Units (HU) and Window
Width specifies the range of HU in a slice and the Window Level specifies where that range is
located. Providing a feature maps with three separate channels at varying levels of radiation
provides the model with more context mimicking a radiologists evaluation process.

The second solution makes the same observation as PatchFCN regarding using superior and
inferior slices to ascertain greater context, however they both differ in execution. Whereas
PatchFCN provided the inferior and superior slices as additional inputs to the network, this
paper applied an image interpolation technique to fuse all three slices into one image.

One final pertinent detail of the architecture is the addition of a 6th output node in the detection
model. This node is responsible for general detection of ICH as opposed to the other five that
detect ICH subtypes.

Interestingly when comparing the ROC AUC scores for both papers, the Ensemble Model paper
performed better than PatchFCN on the retrospective set with a score of 0.993 but worse on
the prospective set 0.961. The most likely explanation for the discrepancy in scores is due
to PatchFCN using cross-validation in its retrospective score, which comparatively is a more
conservative estimate of generalizability. Considering that the prospective test set is more
comparable it could be stated that PatchFCN has slightly better performance. When looking
at the performance of the the subsets ICH for both papers the results are fairly comparable. An
interesting future experiment would be to see if the performance improves in Ensemble model
by additionally applying the patched-based approach of PatchFCN.
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3.3 Cascaded Deep Learning

Continuing with the theme of using slices with varying window settings, the cascaded deep
learning paper offers a unique solution to ICH segmentation problem [12]. Using the default
window 50/100 (WL/WW) as the primary input, the image is passed to a CNN for detection.
Upon a negative result the secondary input stroke image 40/40 (WL/WW) is passed to a second
CNN network as an additional verification step. If both models with their respective images
are unable to detect haemorrhaging, the slice is classified as negative for ICH presence. If
either network detects the presence of ICH then the input is passed to the FCN networks, for
segmentation and detection of ICH subtypes. The cascaded nature of the architecture is likewise
applied to the FCNs, with each image being segmented separately before being combined at the
very end into one image. The paper demonstrated that this cascaded approach has improved
the sensitivity of the entire model compared to a simpler model with one CNN and FCN.

Relative to the previously cited papers, this study uses the largest dataset of 5702 CT head
scans. However even with the larger dataset the final specificity and sensitivity is comparable
or slightly worse than the aforementioned papers. Furthermore, the results for the various
subtypes ICH fared much worse than in PatchFCN and the ensemble (prospective results were
not done by this research group). One potential reason for this is, unintuitively, the greater
dataset, as there might be a greater make-up of the dataset that consists of rarer cases of ICH
that are more difficult to detect. However, without access to the original dataset, this point
remains fairly speculative. A less speculative reason could be the erroneous decision to have
the FCN models to both do segmentation and detection. In PatchFCN and Ensmeble model
the CNN models would be responsible for both identifying ICH as well as the subtype, whilst
the FCNs would only do segmentation. The cascaded model opts only for a binary detection of
ICH in the CNN and doing segmentation and subtype detection in the FCN. The architecture
of FCN of downsampling feature maps then upsampling them to the size of the original image,
may have lead to information loss that has contributed lower specificity and sensitivity for ICH
subtypes.

One final reason for the slightly worse performance is that this paper did not include additional
contextual information of superior and inferior slices to the target image, specifically only pro-
viding two different window settings for one slice. This could be an important factor as the
previous papers attribute this addition as significant for the final performance of their respective
models.

3.4 U-Net and Even Smaller Datasets

As a natural evolution of FCN, U-Net expands on the idea of upsampling layers by increasing
the amount of feature channels, improving the context propagation process. In essence, U-
Net mirrors the number of downsampling layers with upsampling layers, creating U shape of
the architecture. The original U-Net paper was created with medical imaging segmentation in
mind and has seen success on small datasets [20]. It was to be expected that U-Net would see
application in other image segmentation tasks.

A 2019 paper published by natureresearch, applied a single U-Net model just for ICH segmen-
tation [21]. A worrying aspect of this paper is the small datasets used for training, 51 and 150
head CT scans from different institutions. The 51 head dataset was unconventionally split into
21 for training, 25 for testing and 5 for observer variability. The limits of the paper are clearly
stated related to the small dataset, which has lead to the omission of 2 ICH subtypes, those
contained within the subarachnoid and intraventricular compartment.
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The omissions and small dataset provides a certain challenge in comparing the results with
previous papers. The main metric of evaluation in this case is the Dice score, which achieved
a DSC score of around 0.9 on both datasets, without applying cross-validation compared to
PatchFCN’s 0.75 score. Neither the cascaded nor ensemble models can be compared as they
used an overlap percentage metric instead, where they evaluated how many of the predicted
pixels overlapped with the ground truth.

The paper did provide two outlier scans that struggled with accurate segmentation. One of
which was a small ICH pathology, which grants some credence that the this model may be
unreliable for generalizability, especially since no prospective testing was done after the model
was completed.

Another paper, that also utilized the U-Net, model implemented both segmentation and detec-
tion [15]. Furthermore, it also had a relatively small dataset of 82 scans. This paper however,
did not aim to create state-of-the-art performance model but rather provide a thorough litera-
ture review in automated ICH diagnosis, as well as providing a publicly available dataset and
a baseline model for future academic cooperation. A significant contribution as the majority of
papers in this field provide no to minimal access to the training data.

Interestingly, the model failed to generate any segmentation maps when full CT slices were
provided for training. The researchers hypothesized since only a small subset of each image
actually belonged to the positive class the model was heavily biased towards negative classifica-
tion. By dividing each slice into 49 overlapping windows each 1/16 the size of the original slice,
allowed for undersampling of the negative regions, similar to the approach taken in PatchFCN
of context localization. The results of the model, however are the weakest out of all the cited
papers, providing a Jaccard Index of 0.21 and Dice Coefficient of 0.31. The detection results
didn’t fare much better, since no AUC was provided and only sensitivity and specificity and
different thresholds, the best overall accuracy of 87% was achieved with a sensitivity of 63.1%
and specificity of 88.6%.

An interesting suggestion provided by the paper in the future work section, was creating a
model that used LSTMs in incorporating superior and inferior slices to the model.

3.5 Condensed Results

Table 1: Full Results
Paper No. of CT Scans ICH Detection Score ICH Segmentation Score

PatchFCN (original) 591 Retrospective - AUC 0.976 Retrospective - Dice: 0.766,
Prospective - AUC 0.966 Jaccard: 0.620, AP: 0.785

PatchFCN (updated) 4,396 Retrospective - AUC 0.978 Retrospective - Dice: 0.75
Prospective - AUC 0.991

Ensemble Model 904 Retrospective - AUC 0.993 Retrospective - AP: 0.781
Prospective - AUC 0.961

Cascaded Deep Learning 2647 Retrospective Retrospective
Sensitivity 0.9791 Precision 0.8019
Specificity 0.9876 Recall 0.8215

U-Net segmentation 25/50 - Retrospective - Dice: 0.90/0.91

U-Net segmentation + detection 82 Retrospective (Best Acc.) Retrospective
Sensitivity 0.631 Dice: 0.31
Specificity 0.886 Jaccard: 0.21
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4 Summary & Conclusion

In this written report a comprehensive review of literature related to ICH segmentation and
detection that utilised fully convolutional networks was provided. The first segment provided a
brief introduction into deep learning techniques that underpin the architecture of ICH models.
This was followed by delineating and comparing various studies in this field that were available
at the time of writing, concluding with a table for succinct quantitative analysis.

From the cited literature only 2 papers stand out in terms of thoroughness and model per-
formance, the updated PatchFCN model and the Ensemble model, with results rivalling that
of experienced radiologists. On the basis of segmentation it is hard to compare the two as
they provided different evaluation metrics, however from a practical point of view a radiologist
doesn’t need pixel perfect classification of image maps. A radiologists needs to identify the
region on a CT slice that contains ICH and increasing the overlap percentage score has severe
diminishing returns. A better metric for comparison is the detection score as a higher sensitivity
and specificity provides immediate benefit to the radiologist. In those metrics both papers are
fairly comparable, with a slight edge given to PatchFCN for the prospective score, which could
be argued is a better indicator of generalizability. Unfortunately, there is a potential problem
with direct comparison of the various architectures namely the discrepancies in the type and
availability of data. The initiative done by U-Net paper (segmentation + detection) to start
amassing a dataset of CT scans with labelled ground truths is a good approach to alleviate
that concern. Once the dataset grows to significant size in the future (around 1000 CT scans),
true comparative analysis can be done of the various architectures, much in the same way that
ImageNet has spurred innovation in Computer Vision tasks.

There are a few common themes between the various architectures. Better performance could
be noted when architectures seperated their models for detection (CNN) and segmentation
(FCN) instead of trying to do both in a single model like in the U-Net model. Another key
performance booster was incorporating superior and inferior slices to the network either as
separate inputs or through interpolation, giving the model more information to discern ICH
from image artefacting. The final common element in the cascaded network and the ensemble
network was the utilization of slices at various window widths and levels.

Considering the comparative performance of the top models against radiologists it can assumed
currently that these models are good enough to at least be an assistive tool for medical specialists
for diagnosis. As already stated in the introduction there are already available commercial
solutions of AI ICH detectors, however what technology underpins those models is hard to tell,
as these companies have not openly shared their studies.

If given the opportunity to form my own study, I would primarily focus on obtaining a diverse
set of CT scan data from various institutions, CT scanner types and age groups. The target
model would implement the patch based approach of PatchFCN for context localization and
employ an ensemble based approach for ICH detection. Each slice would be a feature map
contain slices at various window widths and levels and the network, each slice would likewise
be interpolated with the superior and inferior sllices.
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