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Abstract

We review the use of GANs in supervised and unsupervised image-to-image translation,
focusing on methods that pushed the boundaries of this vast field and became the foundation
upon which most recent models are developed. Emphasis is given to models that achieved
general purpose and multimodal translation. Our findings suggest that recent studies focus
on producing more realistic and diverse generated images, mainly in an unsupervised setting,
trying to bridge the gap between supervised and unsupervised translation. Finally, we
argue that better evaluation methods for translation models must be developed, as current
techniques are not adequately reliable.
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1 Introduction

There exist numerous and important applications that require the mapping of a given image
from its original domain X to a target domain Y , exactly like we would translate a phrase from
English to French. For example, adding colour to a greyscale image could be perceived as the
translation of an image x from the domain of greyscale images X to a corresponding output
image y of the target domain of RGB images Y (x : X → y : Y ). Other examples are mapping
edge-maps to images, day scenes to night scenes, semantic labels to images and many more.
This broad sub-field of computer vision and graphics is known as image-to-image translation
and can be divided into sub-categories with various criteria.

A straightforward way of categorizing such techniques and methods concerns the existence of
paired data. More specifically, many algorithms in this field require that a dataset exists with
paired images from the input X and the target Y domains (e.g. the Night2Day [1] dataset
consists of pairs of the same scene at day and night). If that is the case, image-to-image
translation is considered supervised. However, this is not always possible. Not only can the
pairing of images be time-consuming and expensive, but it can also be impossible in specific
applications. For example, in tasks like object transfiguration (e.g. replacing a horse with a
zebra in an image) pairs from the two domains do not exist.

In the past few years, Generative Adversarial Networks [2] (GANs) have revolutionized both
supervised and unsupervised image-to-image translation. GANs were first presented in 2014
[2] and since then a plethora of studies has been conducted to improve this revolutionary
architecture [3, 4]. Even though many variations of GANs exist the principle is always the same.
A model, termed Generator G, produces samples and another model, termed the Discriminator
D, classifies the samples as fake or real (i.e. as products of the Generator or as original samples,
respectively). In the original GAN [2] the generator samples the input z from a latent space.
The generative model’s objective is to fool the discriminator by generating images that are
indistinguishable from the real ones. The two models are simultaneously trained with adversarial
goals, which corresponds to a minimax two-player game. This is implemented with the value
function V (G,D) (Equation 1), where real data x are sampled from the pdata(x) distribution and
the inputs z are sampled from the pz(z) distribution. The discriminator’s goal is to maximize
Equation 1, since D’s output is a probability (scalar) that must be high for real data and low for
generated data. On the other hand, the generative model’s objective is to minimize Equation
1, by making the discriminator’s output D(G(z)) as high as possible. In the original GAN the
G and D were multilayer perceptrons and during training they were updated cyclically, one
gradient step at a time.

V (G,D) = arg min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log 1−D(G(z))] (1)

Even though GANs have produced remarkable results in the past years, some issues still remain.
A problem that is still open and greatly affects image-to-image translation is mode collapse [5].
The data distribution has multiple modes (i.e. areas with high concentration of samples) and
the generator must model this distribution without missing any mode. However, it is likely that
the discriminator will get trapped in a local minimum during optimization and the generator will
learn to deceive the discriminator with samples from only specific modes. In such an example,
the other modes will collapse and the generator will not generate samples from them.

The use of GANs in image-to-image translation has led to remarkable results and in the past few
years alone dozens of new methods and variations of the original GAN architecture have been

1



Figure 1: Supervised image-to-image translation results, generated by the Pix2Pix [6] frame-
work.

developed. This might overwhelm newcomers and thus it is beneficial that a concise summary
of the most significant techniques be presented. Such an effort had not been made until the
last half of 2020 [7, 8]. However, these approaches either exclude qualitative and quantitative
results, provide minimum information about important techniques or categorize the models
based on their application, which makes little sense, since one of the main advantages of GANs
is that they can lead to general-purpose methods.

In this paper, we review the use of GANs in supervised and unsupervised image-to-image
translation, by focusing on models that pushed the boundaries of the field and became the
foundation upon which most newer methods are based. Our main focus is how GANs led to
methods that achieve general purpose and multimodal translation. Our findings suggest that
generating realistic and diverse images remains an open problem and that the gap between
the performance of supervised and unsupervised techniques is yet to be bridged, with the
latter showing weaker results. Finally, we argue that the current evaluation methods are not
adequately reliable. For example, small changes in the evaluation procedure between researches
leads to completely different results for the same models, which prevents from an objective
comparison between all the existing translation models. After all, not all translation methods
are evaluated on the same datasets and that makes it even more difficult to compare their
performance.

2 Image-to-Image Translation with GANs

In this section, models that have revolutionized image-to-image translation will be analysed and
techniques that were based on them to produce state-of-the-art results will be briefly presented.
The models are divided into two categories based on their type of translation, supervised or
unsupervised, and in each category we focus in specific obstacles and how can they be overcome.
Firstly, a major issue is the development of techniques that lead to general-purpose models (i.e.
translation models that are not tailored for specific applications). Additionally, another signif-
icant challenge is generating diverse outputs and modeling a distribution of possible generated
images (i.e. multimodal translation). Finally, methods will be briefly presented that unlock
image-to-image translation for multiple domains, using but one model. Before diving into the
techniques, some useful evaluation methods will be summarized that play a significant role in
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generative processes.

2.1 Qualitative and Quantitative Evaluation Methods

It is impossible to talk about image-to-image translation and not use some qualitative and/or
quantitative method for evaluating the results. In this section, a brief presentation of the most
common metrics will be made. In table 1, the most widely used datasets in image-to-image
translation are presented along with the corresponding translation task.

• Amazon Mechanical Turk (AMT): AMT is a service that has been extensively used by
researchers to outsource the evaluation of generated data by humans. Generated and real
images are uploaded and evaluators, known as Turkers, either have to distinguish the fake
images or simply evaluate the visual quality of the data. A disadvantage of this method
is that giving feedback to the Turkers when distinguishing between real and fake images,
has a drastic effect on their evaluation [3]. Additionally, each research uses a different
number of Turkers which can have an impact on the evaluation score.

• Fully Convolutional Networks (FCN): A common quantitative approach is the FCN-
score [6, 9, 10, 11, 12]. In this process, a FCN model is trained with real images (e.g. for
semantic segmentation) and then evaluates the generated ones. If the generated images
are realistic and similar to the real data, then the output of the network for the generated
images and its corresponding ground truth must be close. Usually it includes three differ-
ent scores: (1) per-pixel accuracy, (2) per-class accuracy and (3) intersection-over-union
(IOU). This evaluation method has a significant disadvantage in practice, which is that
in every research a different network architecture is used for calculating the score. This
makes it impossible to compare FCN-scores between different researches.

• Learned Perceptual Image Patch Similarity(LPIPS) [13]: This metric is responsi-
ble for reporting the diversity in generated results. To achieve that the average weighted
L2 distance is measured between features of randomly-sampled pairs of generated im-
ages. The main advantage of this metric is that it correlates well with human perceptual
judgement.

2.2 Supervised Image-to-Image Translation with GANs

2.2.1 General purpose image-to-image translation

Researching conditional GANs (cGANs) paved the road for the first general-purpose framework
in supervised image-to-image translation called Pix2Pix [6], which produced state of the art
results for various applications. The difference between a regular GAN and a cGAN is that
the latter learns the mapping not just from random noise z to the output y, but also from an
image x that belongs in the X domain. For the generator, a “U-Net” architecture [22] with skip
connections was used, which assists features that are significant in both the X and Y domain to
flow through the network. This way, domain-invariant information (e.g. the geometric structure
of objects) remains intact. In order to encourage the generation of crisp images, an architecture
termed PatchGAN [6] was used as discriminator, which classifies N × N patches of images,
thus motivating high-frequency structures. The Pix2Pix model revolutionized image-to-image
translation by producing great results, not only in numerous benchmark datasets but also in
custom tasks by the twitter community.
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Task Dataset No. images Resolution Paired

Map ↔ Aerial photo Maps [6] 1K 512× 512 X
Day ↔ Night scene Night2Day [1] 8.5K various X
Semantic labels ↔ photo Cityscapes [14] 5K 1024× 2048 X
Architectural labels ↔ photo CMP Facades [15] 600 various X

Edges ↔ photo
Edges2Shoes[16, 17]
Edges2Handbags [18]

50K
137K

256× 256
256× 256

X
X

Thermal → color photo MPD [19] 95.328 640× 480 X
BW → color photo ImageNet [6, 20] 1.2M 256× 256 X
Face attribute translation Celeb-A [21] 200K various -

Season transfer summer2winter [9] 2K various -

Object transfiguration
horse2zebra
apple2oranges

[9] 2K various -

Painter Style transfer
cezanne2photo
ukiyoe2photo
vangogh2photo

[9] 2K various -

Table 1: Datasets for different supervised and unsupervised image-to-image translation tasks.

The objective of Pix2Pix consists of two parts. The first one (Equation 2) is the adversarial
loss of the cGAN, which is the same as Equation 1, but now the discriminator is conditioned on
the input. Additionally, in order to encourage the generated image to be similar to the ground
truth, the L1 norm is added to the objective (Equation 3), which unlike the L2 norm, leads to
less blurry results.

LcGAN (G,D) = Ey[logD(x, y)] + Ey,z[log (1−D(x,G(z)))] (2)

LL1(G) = Ex,y,z[‖y −G(x, z)‖1] (3)

Combining the losses, the final objective is:

G∗ = arg min
G

max
D
LcGAN (G,D) + λLL1(G) (4)

Using AMT on a “Real or Fake” test, Pix2Pix managed to deceive only 6.1% ± 1.3% of the
Turkers that generated images were real for the photo→ map task and only 18.9%± 2.5% for
the map → photo. In Table 2, the Pix2Pix FCN-scores are presented for the label ↔ photo
translation task on the Cityscapes [14] dataset, where the results for label→ photo are relatively
close to the one’s of ground truth images.

Task w/ Pix2Pix Per-pixel acc. Per-class acc. Class IoU

photo→ label 0.83 0.36 0.29
label→ photo 0.66 0.23 0.17

label→ photo (GT) 0.80 0.26 0.21

Table 2: FCN-score on the Cityscapes [14] dataset for the Pix2Pix framework, using FCN-8s
[23] for semantic segmentation.
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Framework Per-pixel acc. Class IoU

Pix2Pix 0.78 0.39
Pix2PixHD 0.83 0.63

(GT) 0.84 0.68

Table 3: Comparison of FCN-scores on the Cityscapes [14] dataset for the Pix2Pix and
Pix2PixHD frameworks, using PSPNet [24] for semantic segmentation.

Figure 2: Training BicycleGAN [25]: (a) trained model, (b) baseline model for comparison, (c)
training cVAE-GAN (B → z → B̂), (d) training cLR-GAN (z → B̂ → ẑ), (e) training hybrid
model BicycleGAN

Altering Pix2Pix to incorporate a coarse-to-fine generator (G = {G1, G2, .., GN}) and a multi-
scale discriminator (D = {D1, D2, .., DN}), photo-realistic images of higher resolution can be
generated. Pix2PixHD [10] enforced this technique, with 2 sub-networks for the generator and 3
discriminators, and modified the loss function to include feature matching between intermediate
outputs of the discriminator for real and generated images. The result was images of 2048×1024
resolution.

Pix2PixHD seems to outperform Pix2Pix , both in FCN-scores (Table 3) and AMT qualitative
results, since 93.8% of Turkers preferred Pix2PixHD results over Pix2Pix results. However,
from Tables 2, 3, we can see that using a different FCN model changes the evaluation scores of
Pix2Pix drastically.

2.2.2 Multimodal image-to-image translation

Both Pix2Pix and Pix2PixHD generate relatively realistic images but lack diversity in their
results. Even though Pix2Pix applied noise to induce stochasticity in the generated images, it
did not seem to work, since the cGAN learned to ignore the noise. This issue in supervised
image-to-image translation was firstly overcome by the BicycleGAN [25] implementation, a
multimodal solution that models a distribution of possible results (e.g. given a night image of
a scene as input, many possible day images of the scene will be produced).

To achieve this, BicycleGAN learned a mapping from the latent space to the output and back,
to form a bijection. This way, the model is discouraged from generating the same output from
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Method
AMT

Fooling Rate (%)
LPIPS
Distance

Random Real Images 50.0% 0.265 ± .007
Pix2Pix+noise 27.93% ± 2.40 % 0.013 ± .000
BicycleGAN 34.33% ± 2.69 % 0.111 ± .002

Table 4: AMT (Fake vs Real) and LPIPS distance results for BicycleGAN, Pix2Pix and
random real images, on the maps→ photos translation task.

different samples in latent space. The implementation consists of two processes (Figure 2): (i)
encoding with a conditional variational autoencoder GAN (cVAE-GAN) the ground-truth into
a latent space and feeding it to the generator to reconstruct this image and (ii) sampling from
the latent space to generate an image and then trying to reconstruct the latent vector, using
a conditional latent regressor GAN (cLR-GAN). The BicycleGAN’s architecture is strongly
influenced by Pix2Pix, using as generator a “U-Net” with skip connections and two PatchGAN
discriminators.

The objective of BicycleGAN is implemented by combining the objectives of the two processes.
More specifically, the cVAE-GAN (i.e. encoding the ground-truth image to latent code and
afterwards reconstructing the image) corresponds to the loss functions LV AE

cGAN (G,D,E) and
LV AE
L1 (G,E), which are identical to Equations 2 and 3, with the difference that the encoder

is part of the loss function and z is the latent code and not a noise vector. Additionally, in
order to force the latent distribution to be close to a Gaussian distribution the LKL was added.
Regarding the cLR-GAN (i.e. generating an image from sampled latent code and recovering it
back), the L1 loss LlatentL1 (G,E) between the original and the recovered latent code was used
along with the original adversarial loss from Equation 2, to encourage realistic results. Thus,
the objective of BicycleGAN is:

G∗, E∗ = arg min
G,E

max
D
LV AE
cGAN (G,D,E) + λLV AE

L1 (G,E)

+ LcGAN (G,D) + λlatent LlatentL1 (G,E) + λKL LKL(E) (5)

Pix2Pix was used as baseline in the experiments of BicycleGAN. In Table 4, the percentage
of fake images that deceived humans is presented, along with the LPIPS distance score, for
generated images from the Pix2Pix and the BicycleGAN. Even though neither is close to the
fooling rate of “random real images”, it seems that generated images from BicycleGAN are 5%
more likely to deceive Turkers than those produced by Pix2Pix. Concerning the diversity of
generated images, it is clear from the LPIPS distance that Pix2Pix does not excel in generating
diverse results. This confirms that cGANs learn to ignore the added noise and thus output
diversity is insignificant. On the other hand, the BicycleGAN model has no trouble producing
images that are more diverse and realistic compared to Pix2Pix. Again, the weakness of AMT
can be observed by comparing Tables 2 and 4, where for the same task the AMT scores are
quite different.

A more advanced multimodal approach is CEGAN [26]. The key difference between BicycleGAN
and CEGAN is that the latter model uses the discriminator to classify samples in the latent
space, rather than the image space. This produced both more realistic and diverse results.
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2.3 Unsupervised Image-to-Image Translation with GANs

2.3.1 General purpose image-to-image translation

As was the case with supervised image-to-image translation, no general purpose technique
existed for unpaired data, until GANs were sufficiently studied. Early works (e.g. CoGAN [11],
DTN [27] and SimGAN [12]) suffered from limitations and were not effective general purpose
models. The development of CycleGAN [9] not only led to a reliable framework that was not
tailored to a specific task, but also introduced cycle consistency to image-to-image translation
with GANs, which became the foundation for many other models in this field.

By training a mapping G : X → Y , it is not guaranteed that the input x will always be
translated meaningfully to the output y, which in many cases can be caused by the mode
collapse phenomenon. To deal with this issue, CycleGAN trains simultaneously the mapping
F : Y → X along with G, by enforcing a cycle consistency loss [28], so that F (G(x)) ≈ x and
G(F (y)) ≈ y. This technique produces great results in many research fields (e.g. an English to
French translator should ideally be able to return the original sentence in the inverse process).
To implement this1, two adversarial discriminators DY and DX try to distinguish the translated
G(x) and F (y) images. This process is presented in Figure 3, along with how cycle consistency
loss is implemented in both G : X → Y and F : Y → X mappings. Concerning the generator
architecture, it was adopted from [29], while a PatchGAN [6] was used as discriminator.

Figure 3: (a) CycleGAN G : X → Y and F : Y → X mappings, (b) forward cycle consistency
loss: x → G(x) → F (G(x)) ≈ x and (c) backward cycle consistency loss: y → F (y) →
G(F (y)) ≈ y.

The objective of CycleGAN consists of two adversarial losses, for the G mapping: LGAN (G,DY , X, Y )
and F mapping: LGAN (G,DX , Y,X), based on Equation 1. Additionally, the forward and back-
ward cycle consistency loss Lcyc(G,F ) is added, to reduce the difference between F (G(x)) and
x and between G(F (y)) and y, using the L1 norm. So, the final objective is:

G∗ = arg min
G

max
D
LGAN (G,DY , X, Y ) + LGAN (G,DX , Y,X) + λLcyc(G,F ) (6)

In Table 5, FCN-scores are presented for CycleGAN and other relevant models. CycleGAN
managed to outperform all other unsupervised methods, while at the same time being a general-
purpose model. However, it did not succeed in outperforming the supervised Pix2Pix framework.
Once again, the FCN scores in Tables 2, 3, 5 do not match. Other similar, concurrent models

1BicycleGAN, which was developed after CycleGAN, implements a similar method in a supervised setting.
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Task Model Per-pixel acc. Per-class acc. Class IoU

label→ photo

CoGAN
SimGAN
CycleGAN
Pix2Pix

0.40
0.20
0.52
0.71

0.10
0.10
0.17
0.25

0.06
0.04
0.11
0.18

photo→ label

CoGAN
SimGAN
CycleGAN
Pix2Pix

0.45
0.47
0.58
0.85

0.11
0.11
0.22
0.40

0.08
0.07
0.16
0.32

Table 5: Comparison of FCN-scores on the Cityscapes[14] dataset between the CycleGAN and
the CoGAN, SimGAN and Pix2Pix models, using the FCN-8s network for semantic segmenta-
tion.

are DualGAN [30] and DiscoGAN [31] but none produced better results than CycleGAN. UNIT
[32] was another concurrent research, with results close to the ones of CycleGAN. UNIT is based
on the assumption that a pair of images in different domains can be mapped to the same latent
code, in a shared latent space. All of these models utilized GANs to achieve unsupervised
translation that was not task-specific. However, this applies only to cases were images are
to be translated in a specific domain. That is why StarGAN [33] was proposed to perform
multi-domain translation with only one generator (e.g. changing the hair colour and the facial
expression of a face photo).

2.3.2 Multimodal image-to-image translation

Even though the previously presented unsupervised translation models produce relatively re-
alistic results they still lack the ability to generate diverse outputs from a single input. To
achieve multimodal unsupervised translation the MUNIT [34] and the DRIT [35] frameworks
were developed. Both of these approaches implement a disentangled representations approach,
by assuming that the images can be decomposed into a domain-invariant content space, which
is shared between the two domains and corresponds to the spatial structure, and into a domain-
specific attribute space, which corresponds to the style of the image. In both cases a form of
cycle-consistency was applied, inspired by CycleGAN.

Since the approaches of the two models are similar, we will focus on the implementation of
MUNIT, a model based on UNIT, which was briefly mentioned in the previous section. MUNIT
contains two autoencoders, which consist of an encoder Ei and a decoder Gi for each Xi(i = 1, 2)
domain. The images are decomposed into a content code ci and a style code si in latent space.
To translate an image x1 from the X1 to the X2 domain the extracted content code c1 is passed
through the decoder of the other domain’s autoencoder, along with a s2 style latent code,
which is sampled from the target domain. This process is presented in Figure 4. A form of
cycle consistency was applied, termed style-augmented, with the goal of learning to reconstruct
the original image from the generated one, given the style s of the original image. In contrast
with the cycle consistency applied in CycleGAN, this approach does not lead to deterministic
translation.

The objective of MUNIT consists of a bidirectional reconstruction loss and an adversarial loss.
The first loss ensures that the encoders and decoders are inverses of each other, by learning to
reconstruct both the image (image → latent code → image, Equation 7) and the content/style
latent code that has been sampled from the latent distribution (latent code → image → latent
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Figure 4: MUNIT overview.

code, Equations 8, 9), as shown in Figure 4. The goal of the adversarial loss is that translated
images will be indistinguishable from the real ones, as shown in Equation 10 for the X2 domain.
In these equations, q(s2) is the prior N (0, I).

Lx1
recon = Ex1∼p(x1)[‖G1(E

c
1(x1), E

s
1(x1))− x1‖1] (7)

Lc1recon = Ec1∼p(c1),s2∼q(s2)[‖E
c
2(G2(c1, s2))− c1‖1] (8)

Ls2recon = Ec1∼p(c1),s2∼q(s2)[‖E
s
2(G2(c1, s2))− s2‖1] (9)

Lx2
GAN = Ex2∼p(x2)[logD2(x2)] + Ec1∼p(c1),s2∼q(s2)[log (1−D2(G2(c1, s2)))] (10)

Combining Equations 7 - 10 for both autoencoders, the final objective is:

G∗(E1, E2, G1, G2, D1, D2) = arg min
E1,E2,G1,G2

max
D1,D2

Lx1
GAN + Lx2

GAN+

λx(Lx1
recon + Lx2

recon) + λc(Lc1recon + Lc2recon) + λs(Ls1recon + Ls2recon) (11)

In Table 6, we can see that MUNIT generates not only more diverse but also more realistic
images than CycleGAN and its predecessor UNIT. Additionally, even though it does not seem
to outperform its corresponding supervised multimodal method, BicycleGAN, their results are
comparable. More recent techniques have managed to take multimodal translation even further
by simultaneously achieving multi-domain translation. Such models are StarGANv2 [36], which
is the multimodal version of StarGAN, DRIT++ [37] and GMM-UNIT [38], which are the
multi-domain versions of DRIT and MUNIT, respectively.

3 Summary & Conclusion

Image-to-image translation is the task of mapping an image x from a domain X to an out-
put image y of the domain Y . The methods used in this vast field can be divided into two
categories based on the existence of paired data. Should paired data exist the translation is
considered supervised and if not the translation is considered unsupervised. In general, having
paired data is rare and expensive, which is why research mostly focuses on developing advanced

9



edges → shoes edges → handbags
Model Quality Diversity Quality Diversity

UNIT 37.4 % 0.011 37.3 % 0.023
CycleGAN 36.0 % 0.010 40.8 % 0.012
MUNIT 50.0 % 0.109 50.0 % 0.175

BicycleGAN 56.7 % 0.104 51.2 % 0.140

Table 6: Comparison of diversity (LPIPS) and quality (human preference) scores between UNIT,
CycleGAN, MUNIT and the supervised translation model BicycleGAN, on the edges → shoes
[16] and edges → handbags [18] datasets.

methods that generate realistic and diverse results without such datasets. Both supervised and
unsupervised image-to-image translation were revolutionized by the invention of GANs. Using
this architecture led to models that not only generate more realistic images but also achieve
general-purpose (i.e. not tailored to a specific application), multimodal (i.e. able to gen-
erate diverse results from a single input) and multi-domain (i.e. able to translate images to
various domains) image-to-image translation.

In a supervised setting, Pix2Pix was one of the first models that achieved general purpose trans-
lation and it is still used as baseline in many researches. Lacking diversity in generated images,
BicycleGAN was proposed to achieve multimodal translation, outperforming Pix2Pix both in
realism and diversity. In an unsupervised setting, CycleGAN and UNIT were successful general
purpose models that also introduced cycle consistency in image-to-image translation, a method
that inspired many future models. DRIT and a new version of UNIT, named MUNIT, not only
produced more realistic results than the two previous models, but also achieved unsupervised
multimodal translation. More advanced models, like StarGANv2, DRIT++ and GMM-UNIT
achieve general purpose multimodal translation along with multi-domain translation.

The purpose of this review was to present and analyze the supervised and unsupervised models
that pushed the boundaries of image-to-image translation and became the foundation upon
most of the recent state-of-the art methods are based. This paper may serve as a guide to
beginners who might find this vast field overwhelming, due to the great number of different
methods. Our findings suggest that:

1. For the past few years research is mostly focused on unsupervised methods because paired
datasets are rare and expensive. However, more research is required to bridge the gap
between the performance of corresponding supervised and unsupervised techniques.

2. Furthermore, even though tremendous steps have been made towards producing diverse
outputs, all GAN-based approaches are prone to suffer from mode-collapse. Tackling this
issue and generating more realistic results is still and open problem.

3. Current evaluation metrics are not adequately reliable. Concerning quantitative evalua-
tion, many papers present different results for the same models, by altering the evaluation
process. For example, Pix2Pix scored 0.66% per-pixel accuracy on label → photo in the
original paper and 0.78% on the Pix2PixHD paper, because a different segmentation net-
work was used for the FCN-score. The same applies to qualitative results, where AMT
scores might differ due to the subjective nature of the test. For example, Pix2Pix fooled
roughly 19% of the Turkers on the photo → map task in the original paper and approx-
imately 28% in the BicycleGAN paper. These issues and the fact that in each paper a
different dataset is used for evaluation, make it impossible to objectively compare models.
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[18] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual manipu-
lation on the natural image manifold. In Proceedings of European Conference on Computer Vision
(ECCV), 2016.

[19] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi, and In So Kweon. Multispectral pedes-
trian detection: Benchmark dataset and baselines. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[21] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham, 2015. Springer International Publishing.

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440,
2015.

[24] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[25] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and
Eli Shechtman. Toward multimodal image-to-image translation. In Advances in Neural Information
Processing Systems, 2017.

[26] F. Xiong, Q. Wang, and Q. Gao. Consistent embedded gan for image-to-image translation. IEEE
Access, 7:126651–126661, 2019.

[27] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. CoRR,
abs/1611.02200, 2016.
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