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Abstract

This literature review addresses the utility of the emerging Bayesian Brain framework
to our understanding of the functionality of the brain in Cognitive Science. The paper
explores the foundations and emergence of the Bayesian hypothesis, reviews studies sup-
porting its value at the computational level of Marr’s hierarchy of analysis, and reviews
studies challenging its value, particularly at the algorithmic and implementational levels.
The paper concludes by identifying future areas of work required to advance the Bayesian
Brain Cognitive Science and Computational Neuroscience fields.
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1 Introduction

One of the major goals of computational neuroscience and cognitive science is to provide a
unified framework for the overall functioning of the brain which can guide progress in our mech-
anistic understanding of the brain. David Marr’s perspective [1] on levels of analysis for brain
function is relevant to achieving this. Marr states that there are hierarchical levels of analysis
for brain function with the highest being the computational level (i.e. what the brain is trying
to do), the middle being the algorithmic level (how the system achieves the computational goal)
and the lowest being implementation (how is it physically realized). He argues that understand-
ing the brain requires this hierarchical approach and should begin at the computational level.
This approach is described as top-down in contrast to the bottom-up approach often taken by
neurobiologists. At the computational level many recent conceptions of the brain suggest that
the brain’s primary role is to generate appropriate actions through prediction and thereby mini-
mizing the uncertainty that is inherent in the environment within which the brain is situated [2].
To do so, it is postulated that the brain uses generative models of its environment. Generative
models in Cognitive Science are considered to be causal relationships that map probabilistic
dependencies in the outside world [3]. This perspective lends itself well to a Bayesian frame-
work where the brain’s function at a computational level is that of a Bayesian predictive system
which operates in order to reduce uncertainty. However, for the framework to be successful in
guiding the development of cognitive science and computational neuroscience towards a true
understanding of the function of neural systems and the mind, the framework must not simply
exist in the computational realm but also demonstrate a capacity to further the research efforts
at the algorithmic and implementation levels of analysis. This paper attempts to address the
utility of the Bayesian Brain framework to cognitive science and computational neuroscience
through the lens of Marr’s levels of analysis by assessing the contribution of Bayesian theory
to each level. The paper will first provide a summary of the Bayes theorem and the emergence
of the Bayesian Brain theory. This is followed by a review of papers that attempt to provide
a unified Bayesian brain framework at the computational level by focusing on papers positing
Bayesian models from sensory processing to motor actions and higher cognitive capacity. This
is followed by a critique of the utility of the Bayesian framework in developing a holistic under-
standing of the brain by reviewing papers that identify constraints of the utility of the models
at the algorithmic and the implementation levels. This is followed by an overview of papers
which focus on incorporating and addressing these criticisms and constraints and therefore pro-
vide support for the continued utility of the Bayesian Framework in providing insight into the
understanding of the brain across all levels of analysis. The paper ends by identifying some
unanswered problems in the field and exploring how the theory may be of further use going
forward.

1.1 Background

Bayesian inference is a method of statistical inference using Bayes Theorem which is a mathe-
matical theorem named after Thomas Bayes that is used to compute conditional probabilities
[4, 5]. The Bayes equation is:

P (H|E) =
P (E|H)P (H)

P (E)
(1)

In Bayesian inference one updates the probability of a hypothesis as more information becomes
available. The Bayesian approach to probability is distinct in that, instead of relying on fre-
quency or propensity of some outcome, probability is interpreted as a reasonable expectation
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which represents a state of knowledge [5]. In Bayesian inference one has a prior P (H) and it
is this prior which is updated given new evidence by multiplying the prior by the likelihood,
which is the probability of the evidence given the hypothesis P (E|H) to form a posterior belief
P (H|E). Therefore, under a Bayesian Brain framework, the brain is thought to be updating
a posterior probability distribution for a given hypothesis by updating existing prior probabil-
ities of the hypothesis given the evidence, and normalizing that over the sum (integral) of the
hypotheses in the hypothesis space. Bayesian inference is optimal in the sense that it maxi-
mizes the probability of generating the correct hypothesis given the hypothesis space, observed
evidence and prior probabilities.

There is a long history of viewing the brain as extracting sensory information from the world
in a probabilistic manner in order to develop an internal model of the outside world. The first
to suggest this was Hermann Helmotz in the 1860s [6]. Herman argued that the perceptual
system has direct access to only those of our senses which are incapable of fully capturing the
physical world. Therefore, the brain must compute unconscious inference which determines
the most likely physical causes of the sensory stimulation [7]. As indicated above, Bayesian
Inference provides an optimal way of computing the unconscious inference and generating an
internal model in the form of a posterior probability through the combination of the existing
internal model of the world and the incoming sensory information. Hence the Bayesian brain
hypothesis represents a mathematically well-defined normative framework which captures the
ideas of unconscious inference and is optimal given the constraints of uncertainty necessarily
generated by imperfect senses.

While the above is the definition of Bayesian Inference in a mathematical sense. In this paper I
will often follow the readily used definition of Bayesian in Cognitive Science literature where the
term Bayesian acts as a placeholder for a set of interrelated problem solving mechanisms which
are unified by the use of 1) uncertainty which measures degrees of belief, 2) degrees of belief
ought to satisfy the axioms of probability and, 3) degrees of belief represented by deterministic
probabilities ought to be updated in light of new information, typically through the use of
conditionalization. [8]

The general methodology pursued at the computational level by Bayesian Cognitive Scientists
is to 1) Use Bayesian theory to develop a model of a task based on how an idealized Bayesian
system would execute a task. The model would contain free parameters dependent on the task
in question .2) Fit the model’s free parameters to maximize how well the model captures the
data, and 3) compare the model’s performance with that of humans on the specified task [7].

While the computational and algorithmic levels of analysis are agreed upon by Bayesian Cog-
nitive Scientists, there is a divergence of opinion regarding whether the Bayesian Brain frame-
work should be viewed through an instrumentalist or a realist lens. An instrumentalist view
sees scientific models as useful devices to predict observable outcomes concerning a given sys-
tem. Realists, on the other hand, consider good models to be those which pick out component
entities and activities in the system being explored [7, 9]. These different perspectives have
implications for how the computational level findings should guide research at the algorithmic
and implementation levels [1] and will therefore play a role in the critical analysis of the theory
and its utility going forward.
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2 Literature Review

2.1 Bayesian Brain evidence at Marr’s Algorithmic level

2.1.1 Support for the Bayesian Brain in sensory tasks

Perhaps the strongest support for the Bayesian Brain theory lies in the realm of perception.
Under a Bayesian framework, sensory perception operates within a hypothesis space of causes
of the sensory input received. Each cause is a potential hypothesis in the set. The prior proba-
bility is therefore the initial belief in the occurrence of a given sensory hypothesis P (h). Upon
receiving sensory input or evidence h, the areas of the brain related to sensory processing and
perception compute the posterior probability P (h|e) = nP (e|h)P (h) wheren is the normal-
izing constant. Our perception is then determined by the posterior distribution over sensory
hypothesis. There have been numerous studies demonstrating the success of modelling sensory
perception as Bayesian inference. One of the key strengths of the Bayesian models of sensory
processing lies in their ability to explain sensory illusions which often elude accounts of sen-
sory processing which posit that the brain directly represents the surrounding physical world
[10]. These models crucially rely on the existence of a prior p(h) being utilized by the brain
which systematically weights sensory evidence so as to skew the posterior probability of sensory
hypotheses. One study which demonstrated this was the paper entitled “motion illusions as
optimal percepts” [11] which argues that the existing theories of how the brain integrates mo-
tion of visual stimuli such as Intersection of constraints (IOC), Vector Average (VA) or Feature
Tracking (FT), “lack predictive power as each appears to be beneficial in certain restricted do-
mains and lack the capacity to explain a number of well-known motion illusions” [11]. However,
by implementing a Bayesian estimator model with an explicit prior which favours slow move-
ments in the environment this simple prior led to the model reproducing the motion illusion
effect whereby humans perceive object motions to be slower in low contrast environments [11].
By capturing human specific perceptual oddities, the model suggests that humans also rely
on sensory priors which systematically bias perception and lead to sensory illusions. A second
paper [12] argues for the brain being appropriately modelled as Bayesian based on the fact that,
under the assumptions of a Bayesian prior and independent Gaussian noise, humans performed
a visual-haptic discrimination task similarly to a maximum likelihood estimate given by:

Ŝ =
∑
i

wiŜi (2)

wi =

1
σ2
i∑
j

1
σ2
j

(3)

Where is Ŝ is the sensory input from a given sense modality (i.e. vision or touch)

The optimal estimate (estimate with least cumulative variance) is given by a sum of the sensors
weighted by their normalized reciprocal variance. In the experiment, subjects were first asked
to determine height differences between visual and haptic stimuli independently, as well as
using both visual and haptic senses together, and the threshold for discerning the difference was
measured. Noise was then added such that it reduced the reliability of input from a given sensory
modality and the changes in threshold matched the ideal maximum likelihood estimate predicted
by the model by systematically moving towards the discrimination threshold of the less noisy
sense proportional to the noise (variance) provided to the other sensory input [12]. Finally, there
is evidence to support the brain’s use of Bayesian strategies in sensorimotor learning, therefore
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extending the framework from a purely sensory model of brain function to the motor domain.
Traditionally motor operations have been characterized as input-output relationships which
do not take into account the probabilistic nature of either the task or the sensory input [13].
However, in this paper, users were asked to reach for a target while receiving visual feedback
halfway through the movement. The visual feedback was distorted (i.e laterally displaced) by
a distance defined by a Gaussian and bimodal distribution. Consistent with the brain using
a Bayesian strategy, the brain appears to systematically represent the prior distribution and
uncertainty of visual feedback and combine them in a manner consistent with performance-
optimizing Bayesian processes. On each movement, the lateral shift was randomly drawn from
a Gaussian prior distribution with a mean displacement of 1cm to the right and a standard
deviation of 0.5cm. is referred to as the true prior. [13] The visual feedback was provided briefly
midway through the movement and the feedback was systematically distorted. Participants
consistently showed an increased reliance on the prior distribution as sensory feedback became
less reliable.

2.1.2 Support for the Bayesian Brain in Cognitive Tasks

The evidence supporting the Bayesian Brain hypothesis at the computational level is most
compelling for sensory and sensorimotor processes. However, more recently there has been
increasing use of Bayesian models which account for cognitive processes such as concept learning.
Humans have a remarkable ability to learn new concepts which they can acquire often with
just one example and utilize in rich ways, such as correctly generalizing to new novel items,
indicating that they have developed a presentation of the concept boundaries [14]. The paper
entitled “Human-level concept learning through probabilistic program induction” demonstrates
that these remarkable capabilities can begin to be captured under a Bayesian framework. To
do so, the authors introduced Bayesian Program learning (BPL). This program is a generative
model which can sample new types of concepts by combining sub parts in new ways. Each
sub part is itself a generative model over primitives which creates a hierarchy of generative
models. The program captures the human ability to ‘learn to learn’ [15] and thereby creates
rich concepts by combining simpler primitives through developing hierarchical priors, which
means that previous experience with related concepts facilitates learning of new concepts [14].
The model and humans were shown a single character of an alphabet and asked to select another
example of the character from a set of distinct characters drawn by a typical drawer. The model
had an error rate of 3.3% while humans had a similar error rate of 4.5%. Both had significantly
lower error rates than deep convolutional networks with an error rate of 13%. This suggests
that human concept learning can be well characterized using optimal Bayesian models. This
lends credence to a unified view of the brain’s computational level function (i.e the ‘what’ level
of Marr’s analysis) being to perform Bayesian inference to update and utilize priors in tandem
with sensory evidence, and that the brain can therefore be thought of as being Bayes optimal,
given the constraints of neuronal noise and suboptimal sensory input [16].

2.2 Critiques of the Bayesian Brain Theory

To explore the major critiques of the Bayesian Brain hypothesis at the computational level,
and to relate the criticisms to the question of the utility of the theory to Cognitive Science
developments at the ’implementation’ and ’algorithmic’ levels, the paper “Bayesian Just-So
Stories in Psychology and Neuroscience” [17]. will be reviewed. The major points in this paper
are that, under a theory of evolution by natural selection, animals and systems have evolved to be
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‘good enough’ or ‘better than’, as there is no selective pressure for any progress beyond this, and
therefore any claims of optimality within the constraints of neuronal noise and imperfect senses
flies in the face of these established evolutionary constraints. This therefore suggests that non-
Bayesian models are better suited to characterize the function of the brain. However, the major
specific critique in the paper refers to the flexibility in prior choice available to cognitive Bayesian
modelers. In reference to the paper discussed above, “motion illusions as optimal percepts” the
authors correctly cite that the use of the prior in the Bayesian model was not grounded in
any empirical data [11] and, due to the simplicity of the update rule in Bayesian inference, the
prior distribution has significant influence over the model. As noted in the background section
Bayesian models are configured to best match the data. Therefore, Bowers claims that, without
an empirical basis to set the prior Bayesian, models can become so flexible as to essentially
be meaningless. From a realist perspective of the Bayesian brain, the ad-hoc nature of the
priors means that there is little evidence to motivate an exploration of direct implementation of
Bayesian components at the algorithmic or implementation levels. Even from an instrumentalist
perspective, despite not needing to be directly instantiated at the algorithmic or implementation
level, the loss of predictive power of the model, due to effectively over-fitting the data, means
that there need not be any compelling reason to believe that Bayesian perspectives should
place constraints on the lower level which require that the theories lead to outcomes that can
be modelled by a Bayesian system. The paper entitled “Bayes in the Brain—On Bayesian
Modelling in Neuroscience” [9] which promotes an instrumentalist view of the Bayesian Brain
theory acknowledges these issues and states that “in general, if the aim of Bayesian modelling is
to acquire knowledge about underlying mechanisms of perception, then the criterion for choosing
the prior should include some ‘ecological’ consideration since neural processing is influenced by
the statistical properties of the environment.” The Bayesian conception also faces the critique
that, despite being portrayed as Bayes optimal based on modelling experiments from sensory
tasks to cognitive tasks, humans display alarming systematic probability reasoning errors [18]
such as the conjunction fallacy which occurs when humans rate the conjunction of two items as
being more probable than the individual constituents alone [19].

Direct instantiation of Bayesian Brain hypothesis at the algorithmic and implementation levels
faces further critiques. It has been proven that, in the complex hypothesis space within which
the brain exists, marginalization, which requires integration over the entire hypothesis space, is
computationally intractable [20, 21]. Given that the brain has finite memory and computational
power, it is therefore impossible that the brain implements precise Bayesian inference. While
instrumentalist accounts of the Bayesian Brain do not necessitate that the form of the imple-
mentation is captured in the algorithmic model, nevertheless, as argued by Colomb and Series
[9], transition from an instrumentalist perspective of Bayesian models to a realist perspective,
requires that three issues need to be addressed. These are: “(i) How might neurons represent
uncertainty? (ii) How might they represent probability distributions? (iii) How might they
implement different approximations to Bayesian inference?” This means that, for the Bayesian
brain hypothesis to live up to its potential to provide a unified framework of the function of
the brain, and for Bayesian modelling experiments to have utility in uncovering these general
principles, there must be computationally tractable and neuronally implementable mechanisms
for Bayesian computations. In the following section, the paper will explore the leading theories
for plausible implementation of the algorithmic level Bayesian models.
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2.3 The Bayesian framework at Implementation and Algorithmic Levels

To provide a unified framework of brain function across Marr’s levels of analysis [1], and to
prove useful in constraining and defining further neurobiological and computational neuroscience
research at the implementation level, there must be feasible explanations for how Bayesian
models can be implemented in the brain, given the fundamental computational constraints to
precise Bayesian inference described above. This is an active area of current research which
will ultimately determine the true utility of the Bayesian Brain hypothesis, given the goals
of computational neuroscience and cognitive science to address and understand brain function
across Marr’s three levels of analysis. To review the current status of the problem, this section
will be split into three parts each dealing with a major approach the field has taken to address the
plausibility of implementation. The two major approaches are Predictive Coding and Bayesian
Approximation. As stated above there necessarily also must be evidence for neurons encoding
probabilities and therefore current research in that area is also addressed

2.3.1 Predictive Coding

Predictive coding, often called predictive processing, has been heralded as facilitating neuronally
plausible and tractable Bayesian inference [22, 23]. It assumes that the brain continuously tries
to predict its sensory inputs based on a hierarchical structure of hypotheses of the world. In
this conception, the prediction is considered to be ‘top down’ whereby higher order hypotheses
make predictions about the hypotheses below, and eventually make predictions about sensory
input [24]. The contention is that, at each level in the hierarchy, the level updates its hypotheses
about the world when the top-down prediction mismatches the bottom-up information. The
efficiency of the model derives from the fact that, if predictions from higher levels to lower levels
are correct, there is no need for spikes to be transmitted and therefore efficiency is improved [25].
This model is demonstrated in retinal ganglion cells which take a weighted mean of the signals
in neighbouring cells to predict the current light intensity at the center of the target cell. The
cell then transmits the difference between the predicted light intensity and the measured light
intensity minimizing the range of outputs transmitted by the centre and increasing efficiency
[25, 26]. This is therefore clearly a biologically plausible mechanism which could be implemented
in the brain. Further it can be shown that, under the assumption of Gaussian distributions,
Bayesian sequential updating of beliefs can be computed using the following equation where µ
is mean and π is precision

µposterior = µprior +
πlikelihood
πposterior

(x− µprior) (4)

πposterior = πprior + πliklihood (5)

Where the last term in equation (4) x − µprior is interpreted as a prediction error and where
µ(prior) is the prediction of what the new measurement x will be. Hence Bayesian inference can
be implemented by iteratively adjusting predictions with the prediction error that is produced
by each experiment. The learning rate represented by πlikelihood

πposterior
captures the Bayesian logic of

weighting the update and evidence more heavily when prior knowledge is low, and relying on
the prior more heavily when either the likelihood is low or the prior is large. Importantly it can
also be demonstrated that this update expression can be shown to be applicable beyond the
univariate gaussian case [27].
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An example of the explanatory power of the predictive coding algorithm is its explanation of
binocular rivalry in vision [28]. When presented with a stimulus of a house to one eye and a face
to the other, we are being presented with a stimulus with low prior probability. Hence either a
house or a face is predicted and we experience switching perceptions of the house and face: we
do not see a blended version. However, the actual stimulus does not match what was predicted
and therefore a prediction error is triggered and again, taking prior probability and prediction
error into account, the percept will switch to the opposite stimulus [28].

2.3.2 Bayesian Approximation

A second common approach to arguing how Bayesian models could be implemented at the
neuronal level, and simultaneously to respond to the critique that people often make system-
atic errors in their probability reasoning, is to appeal to approximation. The intractability
of Bayesian inference in computer science has led to a number of approximation algorithms
being developed. The two most popular of these are arguably variational and sampling ap-
proximations [7]. This review focuses on sampling algorithms, the most common of which are
the Markov Chain Monte Carlo Methods. In the paper “Bayesian Brain without Probabilities”
[18], the author argues that the brain should be thought of as a Bayesian Sampler which, rather
than computing Bayesian inferences, instead samples randomly from the distribution and there-
fore approximates the posterior distribution. In the limit, this produces optimal inference, but
this is self-evidently impossible, and therefore the systematic errors in probabilistic judgements
made by people are an expected by-product of the sampler missing peaks of the probability
distribution and provides credence to an account of the brain utilizing a sampling algorithm. A
second paper arguing for the utility of sampling as approximation of Bayesian inference situates
the argument in a resource rational framework (optimizing decisions given limited resources) by
arguing that there is a trade-off between deliberation time to make more optimal decisions and
the cost of spending more time and energy deliberating [29]. The authors model the trade-off
using a sampling agent in a binary choice and find that, assuming that the unknown distribu-
tion is gaussian, it takes very few samples to get within a close approximation of the actual
distribution. Therefore, it is often advantageous to make decisions from relatively few samples,
so saving time and energy. The authors then extend this analysis to choices of number 4, 8, 16,
and 32 and show that, despite error rates increasing as the number of choices increases, and
assuming that sampling is costly in time and energy, the ideal trade-off is still relatively few
samples. One issue with this formulation is that the choice of cost for sampling is arbitrary and
it is therefore difficult to derive ecologically relevant conclusions despite a compelling argument
for the virtue of using less samples in constrained computational settings.

2.4 Critiques of Algorithmic and Implementation level approaches

This section will attempt to challenge the veracity of the potential approaches taken to posit
plausible accounts for how the Bayesian Framework at the computational level can be translated
into the algorithmic and implementation levels. While predictive coding is commonly argued
to provide a computationally tractable and neuronally plausible account of how the brain could
implement Bayesian Inference, this view has been questioned by the paper entitled “Computa-
tional Resource Demands of a Predictive Bayesian Brain” [24] The paper argues that, despite
the belief that processing only the prediction error significantly increases the tractability of
inference, complexity analyses of the sub-computations involved in predictive processing utiliz-
ing the generative models on structured representation of the type argued to be required for
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cognitive processes based on Bayesian modelling [30], indicate that the majority are intractable,
due to the sub-components themselves being NP-hard. This sharply contrasts with the claims
made previously that predictive processing is in fact tractable. However, all of these previous
claims are based on simplifications of the representations of the model, for example assumptions
of independence of variables or gaussian probability distributions [24]. Yet many of these sim-
plification restrictions eliminate the capacity to form the rich, structured representations which
are argued to be key in Bayesian models of cognition and hence are often utilized by Bayesian
modellers [30]. This would therefore negate the capacity of predictive coding as it presently
stands to provide an algorithmic level and neuronally implementable account of the increasing
success of Bayesian models of higher order cognitive tasks such as concept learning [14].

The second major critique focuses on the sampling and approximation algorithmic level views.
This aims at dispelling the belief that simple appeals to approximations can solve intractabil-
ity and therefore provide credence to the realist view of the Bayesian brain. While Bayesian
inference approximation algorithms have been developed and often work quite well, these algo-
rithms are restricted to being tractable only on a restricted subset of input domains [31] which
cannot account for the generality of the models proposed by Bayesian modelers of higher cogni-
tive processes at the computational level [30, 31]. Therefore, before appeals to approximations
can justify realist accounts of the Bayesian Brain hypothesis and provide a route towards the
Bayesian Brain providing an account of brain function across Marr’s levels of analysis, work
must be done in understanding how, and if, the brain has ecologically or psychologically defined
constraints on connectivity and input domains to facilitate tractable approximations.

Finally, it is worth noting that the Bayesian Brain hypothesis in large part began due to proba-
bilistic inference representing an optimal mechanism for operating under uncertainty. However,
if tractability issues lead Bayesian Brian proponents to ever greater appeals to approximations,
there is no guarantee that these approximations remain in any sense more optimal than other
strategies for operating under uncertainty, as tractable approximations can in theory be ar-
bitrarily less accurate than what would be expected of the ideal model [8, 32]. As a result,
this in turn undercuts the computational level justification of the Bayesian brain hypothesis as
providing an optimal solution to operating under uncertainty as in fact the brain is not capable
of operating at that level of optimality.

3 Limitations and Future Directions

The studies discussed above provide insight into the utility of the Bayesian Brain framework
for furthering the fields of Cognitive Science and Computational Neuroscience in understanding
of the brain across Marr’s three level of analysis. While this paper approaches the topic by
constraining itself to an analysis utilizing Marr’s approach, the Bayesian Brain field appears
unclear as regards where the Bayesian Brain hypothesis stands in the hierarchy. This paper has
taken the view that the Bayesian Brain represents a computational level concept of what the
brain is attempting to achieve, and this position is endorsed by a number of researchers [27,
33]. However, the literature also defines the theory as functional at the algorithmic level [9].
This illustrates the need for the field to more effectively and consistently utilize Marr’s levels
of analysis if concerted progress is to be made. Furthermore, the field lacks genuine integration
across the levels of analysis with computational level approaches often disregarding the need to
ground the parameters of their models in empirical evidence from neurobiology. This makes it
difficult for papers exploring the Bayesian Brain hypothesis at one level of Marr’s analysis to
develop connections and testable predictions based on work performed at another level. There
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is therefore often no relationship between research aimed at Marr’s computational level, where
Bayesian modellers have enjoyed success, and research at the implementation level which has,
by comparison, struggled to make significant progress. This disconnection is most obvious in
the complexity of the models developed for higher cognitive capacities at the computational
level with seeming disregard for the paucity of credible implementation accounts to match the
models. Finally, the field seems to struggle with lack of clarity as regards an instrumentalist
vs realist account of the Bayesian Brain theory. This contrast is striking with prominent advo-
cates supporting both realist accounts [7, 16] and instrumentalist accounts [9]. However, which
perspective is taken drastically affects the approach to current research as well as future direc-
tions of the field. A realist perspective creates a potentially limiting dogma where researchers
at the lower levels of Marr’s hierarchy take the Bayesian Inference account literally and there-
fore seek to find direct mechanistic accounts of the proposed computational level model in a
form similar to that of the model. However, an instrumentalist account creates no more than
a predictive framework for the outcomes (behaviour) of the algorithmic and implementation
levels but remains ambiguous as regards how this effect could come about at the lower levels,
potentially increasing the freedom for researchers at these levels to make meaningful headway
unconstrained by dogma. It is the contention of this paper that, as it currently stands, there is
little concrete evidence to support a realist account of the Bayesian Brain theory and therefore
little evidence that it provides a unifying account of brain function across Marr’s three levels of
analysis. This is not to say that the Bayesian Framework is not useful at a computational level
and that it cannot help to guide research towards a unified understanding of brain function
across Marr’s hierarchy, but rather that, as the field stands, there is little definitive evidence to
support a direct instantiation of the mechanistic processes involved in Bayesian Brain accounts
at the neuronal level.

Future works in the Bayesian Brain cognitive science field should endeavour to bridge the gap
between Marr’s levels of analysis. Bayesian computational modelling must ground itself in
mechanistic empirical neuronal realities as far as possible so that the models produced may lead
to tractable and accurate mechanistic and algorithmic explanations for those models derived at
the computational level. However, it is important to appreciate that there is considerable utility
in the computational level models as they currently stand, particularly in the area of computa-
tional psychiatry which is a relatively new field. Bayesian models of cognition can account for
many psychiatric disorders through altered prior weights and belief updating. Examples of this
include computational models of schizophrenia and autism [34, 35]. A particularly compelling
research direction is therefore to explore how models of behaviour and sensory integration of
healthy subjects can be systematically used to observe divergent responses in patients, and
therefore provide a quantitative and systematic approach to diagnosis and classification.

4 Summary & Conclusion

The Bayesian Brain theory in Cognitive Science was developed in response to the observation
of the complexity of the environment in which the brain operates and the inability of the
senses to convey sufficient information to accurately describe and represent that complexity.
The conclusion was that the brain must be performing inference to reduce this uncertainty.
Bayesian Inference represents an optimal mechanism through which an ideal agent can reason
probabilistically to reduce its uncertainty. The Bayesian Brain theory therefore argues that
the brain operates to reduce its uncertainty by utilizing Bayesian Inference. This approach
has been gaining in popularity in Cognitive Science and Computational Neuroscience as a
framework through which the brain’s functionality can be explained [22]. This review has
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attempted to analyze the utility of a Bayesian Brain framework to the goal in Cognitive Science
and Computational Neurosciences of describing the function and operation of the brain across
Marr’s three hierarchy levels, computational, algorithmic and implementation.

To achieve this goal, the paper first critically analyzed the theory’s contributions at the compu-
tational level of Marr’s hierarchy. Studies reviewed demonstrated that Bayesian modelling could
replicate visual illusions [11], sensory integration [12], sensorimotor functions [13] and higher
cognitive processes in humans [14] suggesting that humans are nearly Bayes optimal across a
number of domains. However, these views of the utility of the Bayesian framework have been
challenged by other studies which argue that these findings were skewed by ad-hoc priors in
the Bayesian models [17], and emphasis that that the models are not useful at the algorith-
mic or implementation level as precise Bayesian Inference is computationally intractable [20,
21, 31]. The review then critically analyzed papers which posited ways in which the Bayesian
Framework could nevertheless be made compatible with algorithmic and implementation level
accounts of brain function [18, 22, 29]. The review concludes that future work in the Bayesian
Brain cognitive science field should endeavour to bridge the gap between Marr’s levels of analy-
sis, since Bayesian computational modelling must be grounded in mechanistic neuronal realities
if a holistic understanding of brain functionality is to be advanced.
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