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Abstract

Deep Convolutional Networks have provided astounding results in image classification
tasks over the past decade. As the depth of these networks increase, optimization issues
such as internal covariate shift become more apparent and lead to networks breaking down in
training. Several optimization methods have been introduced to solve this issue and improve
performance. These methods have allowed for the training of much deeper Convolutional
Networks than previously possible and improved image classification performance. This
paper reviews and compares these methods in terms of their ability to solve the problem of
internal covariate shift an increase network performance in image classification.
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1 Introduction

Convolutional Neural Networks (CNNs) have been used with great success in a variety of dif-
ferent fields and applications. Perhaps the most notable of these is image classification, where
deep CNNs have led to huge improvements in image recognition [1] [2]. However, optimization
issues present a significant challenge when training such architectures. This research review will
examine one of these problems: Internal covariate shift. Internal covariate shift and the issue
of vanishing/exploding gradients which results from it lead to training error rates in deeper
CNNs exceeding that of simpler, shallower CNNs. This is surprising as deeper, more com-
plex networks generate more complex functions than their shallow counterparts with which to
learn the training data [3]. Further, deep networks can offer more computational and statisti-
cal efficiency as argued by Bengio et Al. [4]. We would expect this to lead to lower training error.

CNNs differ from traditional Artificial Neural Network (ANN) architectures in their introduc-
tion of convolutional and pooling layers to the network. A CNN is a network which combines
these two types of network layers with the traditional fully-connected layers found in ANNs
[5]. Each unit in a convolutional layer is known as a filter and receives inputs from multiple
units in the previous layer. These inputs are situated in the same local neighbourhood as each
other in the previous layer [6]. This introduces the concept of ”local receptive fields” [6] to the
network and allows the network to identify shared information between the units in the local
receptive field, thereby allowing the convolutional layer to extract features from the data. In
terms of image classification a grouping of pixels may indicate the edge of an object and the
convolutional units can extract this information from local receptive fields. One may think of
each filter extracting ”feature maps” from the inputted data, with a feature map outputted by
every filter. Each convolutional layer is followed by a pooling or ”sub-sampling” layer which
performs a local averaging and sub-sampling of the outputs of the convolutional layer. The
combination of convolutional, pooling and fully connected layers in a traditional CNN for im-
age classification is shown in Figure 1.

Figure 1: Example architecture of a CNN for hand written digit classification. From [7]

Similar to traditional ANNs, CNNs self-optimise through learning. This learning is achieved
through gradient-based learning methods, which is where our optimization problem arises. In-
ternal covariate shift refers to changes in the distribution of network activations due to the
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change in network parameters during training [8]. Each time the inputs of a network pass
through a network layer they are perturbed by the layer’s activation functions. These perturba-
tions occur at every hidden layer of the network, meaning any change in the input parameters
can have a large effect on the distribution of network activations throughout the model [8].
Non-linear activation functions in network layers can lead to layer outputs becoming saturated,
when the outputs of a unit asymptotically approach the bounds of the unit’s activation func-
tion [9]. Internal covariate shift makes it difficult to prevent network activations from becoming
saturated in deep networks due to the amplification of the effect of parameter changes as inputs
pass through the model. When activations become saturated, there is little to no change in
the value of layer outputs as we go through the network. Saturation damages the network’s
ability to learn by reducing the network to a binary state, where only values at the asymp-
totic bounds of the activation function are outputted [9]. In this state gradient-based learning
methods struggle to optimize the weights of the network since adjustments to the weights will
have little effect on the saturated units. This leads to stagnation in learning. In the worst case
this results in vanishing/exploding gradients. In this case, the error gradient of the network
becomes so prohibitively small/large (vanishing/exploding) that the model is prevented from
learning the training data. This effectively stops the model from being able to train as set out
by Hochreiter in [10].

Traditional methods of avoiding these issues involve careful initialization of model parameters
[4], usage of very small learning rates and the usage of Rectified Linear Units as activation func-
tions rather than logistic sigmoid activation functions [11]. However, the small learning rates
used lead to slow training and the resulting models do not overcome internal covariate shift as
networks deepen. Even with these precautions, prior to the introduction of modern methods
such as Batch Normalization [8], the deepest state-of-the-art network architectures were based
on the GoogleNet model of 22 layer depth [12]. Modern approaches both solve the optimization
issues and improve performance, allowing for the faster training of deeper networks.

We examine a number of different approaches to solving internal covariate shift and avoiding
the resulting vanishing/exploding gradients problem. These solutions can be divided into two
broad categories: Layer-based solutions and connection-based solutions. Layer-based solutions
refer to methods that solve our optimization problem through the addition of new layers to the
network. Similarly, connection-based methods refer to methods which exploit novel connections
between layers in order to optimize training. Importantly, layer-based and connection-based
approaches can be combined to achieve optimal results as we will see. Aside from their ability
to alleviate internal covariate shift these optimization methods are compared in terms of the
performance increase in models. Performance is measured by classification accuracy on bench-
mark image classification tasks.

Each of the proposals examined are successful in alleviating internal covariate shift in the train-
ing of deep CNNs to varying degrees. While all allow for deeper networks to be trained success-
fuly, some break down as network depth continues to increase. All approaches therefore allow
for the successful training of deeper networks, which in turn results in improved performance in
image classification benchmark tasks compared to traditional CNN architectures. Furthermore,
all of the solutions examined allow for faster training speeds. However, it is approaches which
combine both layer based and connection based methods that are most successful in mitigating
the effects of internal covariate shift and improving performance.
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2 Literature Review

2.1 Layer-based Methods

Ioffe and Szegedy seek to confront internal covariate shift through the introduction of a novel
technique known as ”Batch Normalization” (BN) [8]. Not only do they seek to solve this op-
timization issue by increasing network stability but also to accelerate model training. The BN
technique reduces internal covariate shift by stabilizing the distribution of nonlinearity inputs
through normalizing the mean and variance of layer inputs. It has the further benefit of re-
ducing the dependency of gradients on the scale of model parameters and their initial values.
This benefits gradient flow, allowing higher learning rates to be used without risking vanish-
ing/exploding gradients.

The aim is to ensure that the network always produces activations with the desired distribution,
regardless of the parameter values while also preserving the network’s information. To this end,
scalar input features are independently normalized to have distribution N(0, 1). Layers with
d-dimensional inputs (x1...xd) are normalized for each dimension by:

x̂k =
xk −E[xk]
√
xk

(1)

This normalization could change what a layer represents (e.g. constraining the inputs of a
sigmoid activation function to a linear regime of the nonlinearity). This is avoided by introducing
learnable parameters γk, βk for each xk such that:

yk = γkx̂+ βk (2)

These parameters are learned along with the original model parameters. The transformation
from xk to yk is known as the BN transformation and is performed over mini-batches of inputs.
For experimentation on CNNs BN was applied to the input of every nonlinearity activation
function in the network. Testing on multiple different network architectures found BN to allow
for both increased learning rate (meaning higher training speed) and the removal of dropout
layers. The removal of dropout layers, an effective regularization technique in neural networks
points to the BN having the additional benefit of regularization. In practice, BN achieves its
aims of not only alleviating internal covariate shift but also allowing faster network convergence
and greater learning rates [12].

Despite its clear advantages, BN is not without its drawbacks. Since the estimation of the mean
and standard deviation of inputs to hidden layers depends on batch statistics, these estimates
can be inaccurate due to shifting parameter values, especially in the initial stages of training.
Also, BN is not applicable to a batch size of one in which case it leads to overfitting of the
training data and poor generalization performance [13]. These issues are addressed with the
introduction of Normalization Propagation (NP) [14].

NP seeks to avoid the issue of inaccurate batch statistic estimates using the knowledge that
the distribution of pre-activation data is Gaussian. This is an assumption which is generally
true of real-world data and is also assumed by the BN creators [8]. Based on this assumption
of a Gaussian distribution parametric normalization can be applied to the pre-activation data,
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removing the need to use batch statistics to estimate its distribution. This normalization is then
propagated through each layer of the network, alleviating internal covariate shift and preventing
vanishing/exploding gradients. Experiments on the CIFAR-10 image classification benchmark
dataset show that NP avoids internal covariate shift to a greater degree than BN. Figure 2
illustrates the evolution of the input distribution to hidden layers across two otherwise identical
networks with NP or BN applied, along with a third non-normalized network . The experiment
is carried out on the validation set of the CIFAR-10 data. The NP network is clearly more
successful in normalizing the input mean to hidden layers to zero, with much less variability
than the BN network. Figure 2 also demonstrates the success of both methods in reducing
internal covariate shift relative to traditional network architectures with the huge difference in
hidden layer input means across layers for the non-normalized network.

Further, NP can be applied to a batch size of just one, with performance appearing to increase
as batch size is lowered [14]. The speed of training of NP networks is also shown to be approx-
imately 12% faster than BN networks [14] with convergence being achieved with less training
epochs, shown in Figure 3. Hence, NP manages to address the existing issues of BN and improve
upon its successes in alleviating internal covariate shift and accelerating training.

Figure 2: Evolution of hidden layer input distribution mean of a randomly chosen unit for all
layers of 9 layer CNNs trained on CIFAR-10. From [14]

Figure 3: NP vs. BN convergence stability. NP alleviates internal covariate shift more than
BN, especially in early training. From [14]

Another novel approach named deeply-supervized nets (DSN) is adopted in [15]. Rather than
the standard supervision of only the output layer and then back propagating this supervision to
earlier layers, DSNs provide integrated, direct supervision of all hidden layers in a network. Di-
rect supervision is carried out by introducing “companion objective functions” for every hidden
layer. These companion functions provide a classification output at each hidden layer, analo-
gous to the output of a truncated network at that point. Empirical results show DSNs reduce
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internal covariate shift leading to improved convergence behaviour while giving a reduction in
test error but not necessarily training error (effectively acting as a kind of feature regularization).

This supervision acts as a strong method of regularization for classification accuracy and learned
features for smaller training data and relatively shallow networks. In deeper networks on larger
training data it improves performance by alleviating the problem of vanishing gradients. The
DSN framework was tested against BN and NP methods on the CIFAR-10, CIFAR-100, and
SVHN benchmark datasets. For the purposes of these experiments, CNNs with the same ar-
chitectures and hyperparameters were used, with the only differences coming from the imple-
mentation of the methods in question [14]. These results are presented in Table 1, with NP
achieving the best results for all datasets used.

Method CIFAR-10 CIFAR-100 SVHN

Normalization Propagation 9.11 32.19 1.88
Batch Normalization 9.41 35.32 2.25

Deeply Supervised Nets 9.69 34.57 1.92

Table 1: Comparison of optimization methods on benchmark image classification datasets.
Figures represent % classification error on each benchmark’s test set. From [14]

.

2.2 Connection-based Methods

Layer-based solutions are outperformed in terms of their ability to train deep CNNs without
experiencing vanishing/exploding gradients in [16] through the implementation of a ”deep resid-
ual learning” or ”ResNet” framework. Rather than hoping that the stacked layers of a deep
net assume a desired underlying mapping the authors fit these layers to a residual mapping.
They consider H(x) being the underlying mapping of some stacked layers in a network with
x being the inputs to these layers. The key hypothesis is that if multiple nonlinear layers can
approximate complex functions like H(x) then one may assume that they can asymptotically
approximate the residual function F(x) := H(x)− x. It is reasoned that this residual function
may be easier to learn. However the authors themselves admit that this hypothesis of asymp-
totic approximation is an open debate [3].

The residual learning is applied to blocks of stacked layers throughout the network. The output
vector y from a building block is defined as follows:

y = F(x, {Wi}) + x (3)

where F(x, {Wi}) represents the residual mapping to be learned. A standard building block
according to Equation 3 is shown in Figure 4. The addition of the input x to the residual
mapping is implemented by the insertion of shortcut connections and element-wise addition.
Shortcut connections are connections which skip one or more layers in the block [17], [18]. Since
these shortcut connections are applied to arbitrary blocks of layers, it is possible to apply deep
residual learning to stacks of layers which include optimizing layers such as BN layers.

For testing the efficacy of ResNets, two ”plain” CNNs with 19 and 34 layers are applied to
the ImageNet dataset as well as ResNets of the same depth. BN is applied in the same way
as [8] to all models. To ensure no unfair advantage is afforded to ResNets it is ensured that

5



Figure 4: Building Block of a ResNet. From [16]

Figure 5: Comparison of training between plain networks and ResNets. From [16]

corresponding plain networks and ResNets used have the same number of parameters. Despite
the inclusion of BN it is found that the deeper plain network has a higher validation error than
the shallower network, indicating that BN does not fully solve internal covariate shift. However,
this is not the case for the ResNet models, with both models outperforming their counterparts
and the deeper ResNet network improving on the shallower Resnet in terms of both training and
validation error. Results of these experiments are shown in Table 2. The consistent improve-
ment in model performance indicates that residual learning addresses the optimization issues
of internal covariate shift and vanishing gradients to an even greater degree than BN. In fact,
ResNets allow for the training of extremely deep networks with a 110 layer ResNet achieving a
test error of 6.43% on the CIFAR-10 test set, out-performing all previously examined methods
[16]. In addition to the allowance of deeper networks, ResNets also exhibit faster convergence
as illustrated in Figure 5.

It is worth noting that the ResNets do make use of BN in their architecture, signifying that the
residual learning method adds to the already successful BN method, rather than superseding
it. Further, the identity mapping of ResNets invalidates the theoretical premise of NP and as
such, applying NP to ResNets results in a significant degradation in performance [12]. NP can
be adjusted in order to improve the performance of ResNet models but nonetheless these mod-
els are still outperformed by ResNets using BN. This does lead to ResNets suffering from BN’s
sensitivity to batch-size, with generalization performance decreasing as batch size decreases [13].
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Depth Plain ResNet

18 27.94 27.88

34 28.54 25.03

Table 2: Top-1 error (%) on ImageNet validation data for plain and Resnet networks. From
[16]

Huang et Al. succeed in solving the optimization problems by implementing a new network
architecture, rather than simply modifying the existing structure of CNNs [19]. They propose
a network architecture ensuring maximum information flow between layers by connecting all
layers directly with each other. For a network with L layers, this adds L(L+1)

2 connections. This
architecture is known as a “Dense Convolutional Network” (“DenseNet”). Similarly to ResNet,
DenseNet architectures can be simply combined with layer-based methods since the only change
in the network is the addition of these new layer connections. In a network with L layers, with
each layer l, 1 <= l <= L applying a non-linear transformation Hl(·), the densely connected
architecture is achieved by passing as input to the lth layer the feature-maps of all preceding
layers x0, . . . xl−1 where x0 is the original input image to the network. This results in an input
xl = Hl([x0, x1, . . . , xl−1]) with [x0, x1, . . . , xl−1] being the concatenation of the feature maps in
the layers prior to layer l. This concatenation is not viable when feature map sizes change. To
allow for this the network is divided into multiple densely connected blocks, with convolution
and pooling layers acting as transition layers between the blocks.

If each function Hl) produces k feature maps then the lth layer has k0 + k × (l − 1) feature
maps where k0 is the number of feature maps in the input layer. The authors refer to k as
the ”growth rate” of the network, the number of feature maps that are added with each layer.
State-of-the-art results can be achieved with relatively small growth rates since each layer has
access to all preceding feature maps. This access to the collective knowledge of the network
removes the need to replicate the network’s feature maps at every layer unlike traditional CNNs.
This allows for quicker training since less computation is needed to replicate previous feature
maps. Similarly to ResNets, Dense Nets also use BN, with the BN transform being applied
before every activation layer in a dense block. An example of a dense block is given in Figure
6.

The fully connected nature of DenseNets allows for feature reuse, yielding highly parameter
efficient and easy to train modules. Improved flow of information allows for improved gradient
flow, limiting the effects of internal covariate shift, making them easier to train than tradition
CNNs. Each layer has direct access to the gradients from the loss function and the original input
signal, leading to an implicit deep supervision. This deep supervision allows training of deeper
network architectures, as explained by the findings of [15]. This may explain the improved ac-
curacy of DenseNets on benchmark tasks. Moreover, the dense connections have a regularizing
effect, reducing overfitting. DenseNets are evaluated on three benchmark datasets (CIFAR-
10, CIFAR-100, SVHN), outperforming ResNet models even when compared with ResNets of
greater depth. Comparison of DenseNet performance against ResNets on the four datasets are
shown in Table 3. Their parameter efficiency allows for quicker training than existing meth-
ods while giving comparable accuracy. Additionally, DenseNets yield consistent improvements
in accuracy as parameters increase, without performance degradation or overfitting occuring.
Overall, DenseNets appear to be the optimal solution the problem of internal covariate shift
while also achieving state-of-the-art results with less computation than other methods.
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Figure 6: A 5-layer dense block. From [19].

Method Depth Parameters C10 C10+ C100 C100+ SVHN

ResNet 110 1.7M 13.63 6.41 44.74 27.22 2.01

DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79

DenseNet (k = 12) 100 7.0M 5.77 4.10 23.79 20.20 1.67

DenseNet (k = 24) 100 27.2M 5.83 3.74 23.42 19.25 1.59

Table 3: Comparison of ResNet model and DenseNet models of different architectures. Error
rates (%) on CIFAR and SVHN datasets. k denotes growth rate of DenseNets. “+” indicates
standard data augmentation (translation and/or mirroring). From [19]

2.3 Future Improvement

As previously mentioned both DenseNets and ResNets suffer from the issues inherent in BN. As
recently as mid-2020 a new method challenging BN was introduced, Filter Response Normal-
ization (FRN) [20]. FRN follows the conventional approach of CNNs with convolutional layers
producing feature maps as normal. Each convolutional layer uses learned filters to extract fea-
ture maps from inputs and the convolution outputs a 4-dimensional tensor X with dimensnions
[B,W,H,C]. Here B denotes batch size, W and H are the dimensions of the map space and C is
the number of filters in the convolutional layer. FRN is achieved using the following formula:

x̂ =
x√
v2 + ε

(4)

In this case x is defined as the vector of filter responses for the bth batch point on the cth filter,
with v2 being the mean squared norm of x and ε a low magnitude positive constant to prevent
division by zero. Similarly, to BN this removes scaling. However, FRN does not perform mean
subtraction like BN. This would lead to a activations having a bias away from zero. This is
rectified through the introduction of a Threshold Linear Unit (TLU), an adapted ReLu with
activation function with a learned threshold τ and activation output z defined as:

z = max(y, τ) (5)

8



The authors hypothesize that TLU activation functions are superior to ReLu for optimzation
in this case. The FRN method is tested on the ImageNet dataset on two 50 layer ResNets, one
with FRN and one with BN. The FRN model outperforms the BN model for all batch-sizes
tested showing that ResNets can indeed be further improved with this novel technique. Further
research into the combination of DenseNets and FRN layers would be worthwhile.

3 Summary & Conclusion

This review has covered multiple methods of solving the challenge of internal covariate shift
when training deep CNNs. While all methods achieve this aim to a greater or lesser degree,
there are clearly preferable methods for optimizing the training of CNNs. Layer-based methods
manage to reduce internal covariate shift and allow for the training of deeper networks with
NP proving to give the greatest performance in image classification tasks. However, BN re-
mains the more important development due to its use in connection-based methods. The more
recent development of the FRN method gives a superior alternative to BN for use in ResNet
architectures.

We have seen that connection based methods offer the most successful means of optimization,
allowing for the training of extremely deep networks and state-of-the-art performance. However,
it is important to note that these methods lean on existing innovations with their inclusion of
BN in their networks. Hence, BN may be construed as the most important of the breakthroughs
discussed in this paper, due to its use in subsequent state-of-the-art network models with cer-
tain researchers describing it as a ”cornerstone of current high performing deep neural network
models” [20]. It remains to be seen whether FRN can have a similar impact on the field to BN.

DenseNets present the state-of-the-art model for the training of deep CNNs. Not only do they
solve the issue of internal covariate shift but they offer unbeaten performance on competitive
benchmark datasets at the time of publication. The introduction of FRN to the field provides
an interesting avenue of further research into further and improving performance in DenseNets.
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