
FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)

UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INTRODUCTION TO THEORETICAL COMPUTER SCIENCE

November 2019

23:50 to 23:59

INSTRUCTIONS TO CANDIDATES

Answer ALL questions from Section A,
and ONE question from Section B.

Section A carries 30 marks, and Section B carries 20 marks.

This is an OPEN BOOK examination.

Year 3 Courses

Convener: ITO-Will-Determine

External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)

SECTION A

Answer ALL questions in this section.

1. (a) Define the language operation ⊕, the exclusive or, as follows:

L1 ⊕ L2 = {w | w ∈ L1 or w ∈ L2, but not both}

i. Are the regular languages closed under ⊕? Why or why not? [1 mark]

ii. Are the context-free languages closed under ⊕? Why or why not? [1 mark]

(b) Consider this pushdown automaton P where Σ = {(,)} and Γ = {(,), X}:

q0 q1 q2
ε, ε→ X ε, X→ ε

(, ε→ (

), (→ ε

i. Describe L(P) in simple English. [2 marks]

ii. Give a CFG that recognises L(P). [2 marks]

(c) Show that the context-free language L(P) is not regular, using any of the
methods discussed in the course (Pumping, Myhill-Nerode, etc.). [4 marks]

Page 1 of 6

FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)

2. (a) In the course, we proved that there is a universal Register Machine that can
simulate any other Register Machine. The proof relied upon the use of a

pairing function, and we chose 〈x, y〉2
def
= 2x3y. The pairing function was

then used to produce a sequence coding function 〈〉.
Suppose that we are simulating a machine M with five registers, a program
100 lines long, and that during the course of M ’s execution, the highest
value found in a register is 10.

Construct, with justification, a rough estimate of the largest number that
will occur in a register of the simulating machine. You can present your
estimate in any appropriate notation. [4 marks]

(b) An alternative pairing function, which is a bit harder to invert, but much

more efficient, is 〈x, y〉′2
def
= 1

2
(x + y)(x + y + 1) + y (the Cantor pairing

function). Give, without working, a similar rough estimate if this function
is used in the simulation. [2 marks]

(c) Consider an alternative Register Machine architecture, where the decjz(i, j)
instruction is replaced by two simpler instructions:

• dec(i), which decrements Ri or does nothing if it is already zero, and

• jz(i, j), which jumps to instruction j if Ri is zero.

Show that this architecture is equivalent to the standard architecture. [4 marks]

Page 2 of 6

FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)

3. (a) The λ-term (λn. λf. λx. f (n f x)) (λf. λx. f x) contains a subterm to
which η-reduction can be applied. Identify the subterm and give the reduced
term. [2 marks]

Let tn be an infinite sequence of λ-terms where:

t0 = y x x
tn+1 = (λx. tn) t0

So, for example, t1 = (λx. y x x) (y x x) which β-reduces to y (y x x) (y x x).

(b) If we measure the time cost of a given λ-term to be the number of β-
reductions required, what is the time complexity class of computing the
normal form of tn? Assume a leftmost call-by-name reduction strategy. [2 marks]

(c) If we measure the space cost of a given λ-term to be the maximum size of
the expression represented as a string over its evaluation, what is the space
complexity of computing the normal form of tn? [2 marks]

(d) We know that Turing machines can simulate the evaluation of λ-calculus
terms. Results about complexity, however, are only preserved by such sim-
ulations if they are reasonable (i.e. introduce at most polynomial overhead).
Consider the Turing machine that evaluates (again assuming leftmost call-
by-name) a λ-term represented as a string on its tape. Is this simulation
reasonable? Why or why not? [4 marks]

Hint: Consider the sequence tn.

Page 3 of 6

FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)

SECTION B

Answer ONE question in this section. If both questions are
attempted, ONLY question 4 will be marked.

4. Consider the following problem, DFAInter: Given a finite set of DFAs, is there
a word w which is accepted by all of them?

This problem is known in general to be PSPACE-complete, but we shall examine
a restricted form of the problem where the languages of all input DFAs are finite,
called DFAInterF. This means that length of our common word w is bounded
above by n, the maximum number of states in the input DFAs.

(a) Show that DFAInterF is in NP. [3 marks]

Hint: Use the fact that |w| ≤ n

(b) Recall that an instance of 3-SAT is a boolean formula ϕ over a set V =
{v1, . . . , vn} of variables. The formula is in 3CNF, i.e. ϕ is a conjunction∧

1≤i≤k Ci of clauses, where each clause Ci is a disjunction (`1 ∨ `2 ∨ `3) of
three literals, each of which is either of a variable vm or a negated variable
¬vm.

Construct a reduction to DFAInterF from 3-SAT. That is, given an in-
stance of 3-SAT, construct an instance of DFAInterF. [5 marks]

Hint: For each clause in the given 3CNF formula, construct a DFA that
accepts any satisfying truth assignments for that clause (encoded as a binary
string).

(c) Show that your reduction is polynomial time, and deduce that DFAInterF
is NP-complete. [4 marks]

Now consider the problem KPow: Given a DFA D and a positive integer k, is
there a non-empty word w such that D accepts k repetitions of w (i.e. wk)?

(d) Show that this problem is NP-hard, by constructing a polynomial time re-
duction from DFAInterF to KPow. [8 marks]

Hint: Given DFAs A1, . . . Ak, consider the language consisting of strings
(where # is not in the alphabet of any input DFA)

L(A1)# · · · L(Ak)#

Page 4 of 6

FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)

5. The lambda-calculus is based on variables, lambda-abstraction and application.
These can be a bit tricky to understand and manipulate.

(a) Demonstrate the above by tracing how

(λx.λy.xy)(λx.y)w

β-reduces under a call-by-name strategy, identifying the reduced term at
each stage, and commenting on steps that require particular attention. [4 marks]

Combinator calculus is a way to remove variable and lambda-abstraction. It
gives names to three special λ-terms, and gives them derived β rules (which
follow directly from their definitions), as follows:

combinator derived β rule

I
def
= λx.x IU

β→ U

K
def
= λx.λy.x KUV

β→ U

S
def
= λx.λy.λz.xz(yz) SUVW

β→ UW (VW)

Here U, V,W are arbitrary terms. Remember that application associates to the
left, so that SUVW means ((SU)V)W

A SKI-term is a term written using only I, S,K and application (i.e. with no
explicit λs). A SKI-term may β-reduce to another such term using the derived

rules. For example, SKSK
β→ KK(SK)

β→ K.

We say that two SKI-terms U and V are β-equal, U
β
= V , if they can be converted

into each other by forward and backward uses of the combinator
β→ rules.

We say that U and V are (extensionally) equal, U = V , if either U
β
= V , or for

some n, for any terms X1, . . . , Xn, UX1 . . . Xn = V X1 . . . Xn. That is, U and
V need not be directly interconvertible, but when applied to enough arguments,
they are.

It can be shown that if U
β
= V , then there is a term W such that U

β→ . . .
β→ W

and V
β→ . . .

β→ W – the Church–Rosser theorem.

(b) Show that SKK = I, but SKK 6 β= I. [4 marks]

QUESTION CONTINUES ON NEXT PAGE

Page 5 of 6

FOR EXTERNAL EXAMINER (date of this version: 6/3/2022)QUESTION CONTINUED FROM PREVIOUS PAGE

Since combinator calculus is equivalent to lambda-calculus, it is equivalent to reg-
ister/Turing machines. We can show this directly by encoding register machines
into combinators. The following additional combinator is useful:

B
def
= λx.λy.λz.x(yz) BUVW

β→ U(VW)

One way of encoding the natural numbers into combinator calculus, where pnq
denotes the coding of n, is:

p0q
def
= KI

p1q
def
= I

pn+ 1q
def
= SB(pnq) for n ≥ 1

(c) In the preceding definition SB appears to be representing the successor (add
1) function, but we first use it in p2q. Show that SB(p0q) = p1q. (Hint: you
will need to give the terms two arguments.) [2 marks]

(d) Show, by induction on n, that for arbitrary terms X, Y , we have pnqXY =
Xn(Y), where Xn(Y) means X(X(X . . . (X(Y)) . . .)) with n X’s. [4 marks]

Similarly, combinators can express decrement, zero-test, addition, multiplication,
and other arithmetic functions. The fixed point Y combinator from lectures can
also be expressed in terms of S,K, I, and allows the definition of recursive functions
or loops.

(e) Outline how you would simulate register machines in combinatory calculus,
assuming that the above-mentioned constructions are available. Assume
also that the simulation is used for providing a reduction from the halting
problem for register machines to a problem in combinatory calculus. Explain
what the target problem is, and how the reduction preserves membership of
the source and target queries.

Your answer should discuss (briefly) how to represent machines as combi-
nator terms, how to simulate execution of the machine, and how to simulte
halting of the machine. [6 marks]

Page 6 of 6

