
Module Title: Introduction to Theoretical Computer Science
Exam Diet (Dec/April/Aug): April 2021/2
Brief notes on answers:
Section A
All section A questions are either bookwork or simple applications similar to questions
done in coursework or tutorials. The marking scheme is generic: drop 1 for minor slips,
give about half for an answer with significant gaps, give a token 1 for an answer that is
wrong but suggests at least some understanding.

1. (a) (i). Regular Languages are closed under ⊕ as L1 ⊕ L2 could be rephrased as
(L1∪L2)∩(L1 ∩ L2), and as regular languages are closed under intersection,
union, and complement, they are closed under ⊕.

(ii). Context-free languages are not closed under ⊕ as, if they were, then the
complement of a context-free language L could be given by L⊕Σ∗ and thus
would be context-free, but we know that the context-free languages are not
closed under complement.

(b) (i). It describes the language of matching parentheses.

(ii). S → (S) | SS | ε
(c) Consider the infinite sequence of strings ui = (i. For any i and j where i 6= j

we have a string wij =)i. Then uiwij ∈ L(P) but ujwij /∈ L(P), thus there are
an infinite number of equivalence classes and thus the language is not regular by
the Myhill-Nerode theorem.

2. [easy problem-solving]

(a) The function 〈h :: t〉 is 〈h, t〉2, so roughly the code of a sequence of length n is
n3 (the n-fold exponentiation of 3 to the 3, alias tetration). The value of h can
be roughly ignored - if it is small, it adds about 1 to the exponent of 3, which is
insignificant.

According to the coding in lectures, a machine state is a pair of program and
register contents. The program is a sequence of length 100, and the register
contents a sequence of length 5; these will add. So a very rough estimate is 1053.

Give 3 marks for an answer like this, 4 marks for anything more careful. 2 marks
for anything that at least gets the tower of exponents.

(b) This is vastly better, because a sequence of length n with values of size m codes
to about mn. So a similar rough estimate would be around 3105 (or 10105 to be
more pessimistic), which is huge but manageable.

(c) Need to show we can translate programs both ways. From classical, decjz(i, j) is
equivalent to jz(i, j′);dec(i). where j′ is the location in the translated program
corresponding to j in the original. From alternative, j0 : dec(i) is equivalent to
j′0 : decjz(i, j′0 + 1), and jz(i, j) is equivalent to decjz(i, j′); inc(i). One mark
for each basic translation, plus one for remembering that instruction numbers
need relocated.

3. (a) The rightmost λ-abstraction can be eliminated with the η rule, giving:

(λn. λf. λx. f (n f x)) (λf. f)

i

(b) The number of β-reductions to normalise ti is O(i), i.e. polynomial (linear) time.

(c) The size of the normal form of ti as a string is exponential in i.

(d) A Turing-machine must move the tape head to a tape cell in order to write to
it. Therefore, there is a relationship between space and time: Any algorithm
that uses exponential space must use exponential time. This simulation is not
reasonable with respect to the cost models we used earlier, because the space
required to write the normal form of ti grows exponentially with i but the model
used for time (number of β-reductions) grows only linearly. It is impossible for
a Turing machine to simulate λ-calculus with those complexity characteristics.

ii

Section B

1. (a) We know that the word is of length ≤ n, therefore we may simply nondetermin-
istically guess a word w by nondeterministically guessing each symbol up to the
length n [2] and (in linear time) check if it is accepted by a DFA [1]. Thus this
problem is in NP.

(b) Consider a clause Ci = (`1 ∨ `2 ∨ `3). We will construct a DFA that recognises
satisfying assignments for this clause. [1] Each of the literals will be either a
variable Vk or its negation ¬Vk. If there is a positive variable Vk in the clause,
our DFA will accept if it encounters a 1 at position k. If there is a negation, i.e.
¬Vk, our DFA will accept if it encounters a 0 at position k. [1] Such a DFA can
be constructed using a number of states linear in the number of variables. We
have now constructed a DFA Ai for each clause Ci. Each of these DFAs accepts
a finite language corresponding to the satisfying assignments of the clause. [1]
Thus, the intersection of these DFAs accepts exactly the satisfying assignments
for the whole formula. [1] Thus we can solve 3-SAT problems by reducing them
to finite language DFA intersection problems. [1]

(c) The construction of each DFA requires a linear number of states, and thus could
be carried out in polynomial time. [2] Thus DFAInterF is NP-Hard, and
because it is also in NP, it is thus NP-Complete. [2]

(d) We are given DFAs A1, . . . , Ak. Construct a combined DFA A by adding a
transition from all final states of An to all initial states of An+1 [2]. The transition
should be labelled by the special symbol #. The final states of Ak should have a
similar transition to a new final state [2]. This DFA would recognise the language
that consists of words from each language in order, with each word terminated
by a #. Clearly, this construction could be done in polynomial time [2]. Note
that the word w is in the intersection of the languages of our input DFAs if our
constructed DFA A accepts w# repeated k times. Thus we have a polynomial-
time reduction from DFA intersection (and thus DFAInterF) to KPow, and
thus KPow is NP-hard. [2]

2. None of the problems are hard in themselves, but they require a reasonably well
developed understanding of the course material in order to apply it in a slightly
different context.

(a) [bookwork+] Want to reduce(λx.λy.xy)(λx.y)w, but need to α-convert to avoid
variable capture, so:
(λx.λy.xy)(λx.y)w

α→ (λx.λz.xz)(λx.y)w, then

(λx.λz.xz)(λx.y)w
β→ (λz.(λx.y)z)w then

(λz.(λx.y)z)w
β→ (λx.y)w then

(λx.y)w
β→ y

3 for the reduction steps, 1 for commenting on α.

(b) [problem-solving] SKK
β
= I because SKKX

β→ KX(KX)
β→ X

β← IX [1 mark].

To show that SKK 6 β= I, we observe that there is no β-rule that applies to SKK
or to I [1 mark], and so they have no common redex, and are not equal by
Church–Rosser [2].

iii

(c) [problem] SBp0qXY ≡ SB(KI)XY
β→ BX(KIX)Y

β→ BX(I)Y
β→ X(IY)

β→
XY

β← IXY .

(d) [problem] Base case 0: KIXY = IY = X0Y [1 mark].

Base case 1: done in part (c) [1 mark].

Inductive step: pn + 1qXY = SB(pnq)XY = BX(pnqX)Y = X(pnqXY) =
X(XnY). [2 marks]

(e) [problem, synthesis] The strategy is to convert a machine into a combinatory
expression which rewrites into a coding of the final state (if any) of the machine.
We might say that it rewrites into the numeral for the final contents of register
0, for example.

We can represent register contents directly as the corresponding combinatory
numerals. They might carried as arguments.

The program can be represented in various ways. Probably the conceptually
easiest would be to carry the (codes of) instructions throughout the rewriting as
arguments to the main expression. Alternatively, the program can be packed up
into a numeral, and instructions extracted on demand as with univeral machine
constructions.

The execution of the increment and decrement is simple; executing a jump in-
struction after a successful zero test means rewriting to execute the target in-
struction, however they are labelled.

On executing the halt instruction, the combinary expression could rewrite into
a simple numeral, or some other flagged state.

Then the halting of the original machine corresponds to the combinatory expres-
sion being β-rewritable to a flagged state.

Give roughly one mark for each of these (or other similar) points.

iv

