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About this talk

The aim is to:
– Part I. Motivate the use of logic and symbolic knowledge

representation and reasoning techniques in developing AI applications.

– Part II. Present techniques to improve the efficiency of logical
inference.
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Part I. Motivation
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Deep learning
-the successes
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PReLU-nets surpass humans on
classification in 2015

– PReLU networks achieve 4.94% top-5
test error on ImageNet 2012
classification.

– Human-Level top-5 test error is 5.1%.

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. In ICCV, pages 1026–1034, 2015.
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AlphaGo seals 4-1 victory over
Go grandmaster in 2016

November 24, 2023 University of Edinburgh 6



ChatGPT passes medical and law
exams in 2023
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Deep learning strengths
– Pattern classification (in large).

– Learning via example.

– Tolerance to noise.

November 24, 2023 University of Edinburgh 8



Deep learning
-the failures
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Deep (vision) models are prone
to biases
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Figure: Accuracy of BGNN [11], KBFN [6] and VCTree [13]
on Visual Genome [9]. Task: scene graph generation.
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Large language models fail on
abstract reasoning

– LLMs have very limited performance in
abstract reasoning.

– Techniques that can improve
performance on other NLP tasks cannot
improve the abstract reasoning
capabilities of large language models.

Gaël Gendron, Qiming Bao, Michael Witbrock, Gillian Dobbie. Large Language Models Are Not Strong Abstract Reasoners.
In Arxiv, 2023.
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Deep learning weaknesses

– Focus on single cognitive abilities.

– Requires large amounts of training data.

– Lacks transparency/interpretability.

– Its answers cannot be fully trusted.

– Prone to data biases.

– Difficult to incorporate background knowledge.

Gary Marcus. Deep Learning: a Critical Appraisal. In Arxiv, 2018.
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Logic to the rescue
– Focus on single complex cognitive abilities.

– Requires large small amounts of training data.

– Lacks transparency/interpretability.

– Its answers can not be fully trusted.

– Not prone to data biases.

– Difficult Straighforward to incorporate background knowledge.
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Via logic, we can indeed learn
(deep) classifiers!

– (Deep) classifier learnability under
unknown logical theories.

– (Deep) classifier learnability under
probabilistic logical theories.

Kaifu Wang, and Efthymia Tsamoura, Dan Roth. On learning latent models with multi-instance weak supervision. In
NeurIPS, 2023.
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Via logic, we can overcome data
biases!
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Davide Buffelli, and Efthymia Tsamoura. Scalable Theory-Driven Regularization of Scene Graph Generation Models. In
AAAI, 2023.
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Scene Graph Generation (AAAI 2023)

Figure: Recall of VCTree [13] on the 28 least frequent predicates: without NGP; with NGP.
Benchmark: Visual Genome [9].
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Knowledge Distillation into Deep Networks (ICML 2023)

Concordia
– First to support general first-order theories.

– Supports semi-/un-/supervised learning.

Operation Equation

Inference ŷ = argmaxy PN (Y = y|X = x,θ)

Training θ̂t+1 = argminθ(ℓ(ŷN ,y) +KL(PN , PL))

λ̂t+1 = argmaxλ
∏

(x)∈D
PL(X = x,λt)

Leon Jonathan Feldstein, Jurčius Modestas and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In
ICML (to appear), 2023.
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Video Activity Detection (ICML 2023)
SEQ(B1, B2) ∧ CLOSE(B1, B2)→ SAME(B1, B2)

DOING(B1, A) ∧ SAME(B1, B2)→ DOING(B2, A)

Accuracy over 5 runs
Model Avg (%) Max (%) Min (%)
ACD+L [12] 86.00 - -
MobileNet 90.07 91.36 89.61
IARG(MobileNet) [10] 90.18 92.39 87.55
Concordia(MobileNet, L) 90.73 93.19 89.54
Inception 89.72 91.83 86.84
IARG(Inception) [10] 88.88 91.67 85.33
Concordia(Inception, L) 92.75 93.34 92.31

Leon Jonathan Feldstein, Jurčius Modestas and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In
ICML (to appear), 2023.
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Entity Linking (ICML 2023)

Table: Results on entity linking.

Model F1 Acc (%)

BERT (sp) 0.88 88.5
Concordia(BERT) (sm) 0.91 91.4

Leon Jonathan Feldstein, Jurčius Modestas and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In
ICML, 2023 (to appear).
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Visual QA (SIGMOD 2023)

Q(O)← NAME(herbivore,O)

NAME(N,O) ∧ NAME(N ′, O)→ ISA(N ′, N)

→ ISA(giraffe, herbivore)
→ ISA(dear, herbivore)

Table: Recall@5 on VQAR [7].

Testset LXMERT [14] RVC [4] TG-Guided VQA
C5 64.05% 74.62% 87.01%
C6 56.51% 72.04% 85.45%

Efthymia Tsamoura, Jaehun Lee, and Jacopo Urbani. Probabilistic Reasoning as Scale: Trigger Graphs to the Rescue. In
SIGMOD, 2023 (to appear).

November 24, 2023 University of Edinburgh 20



Part II: Reasoning at Scale
via Trigger Graphs

Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. Materializing Knowledge Bases via Trigger Graphs. In
VLDB, pages 943-951, 2021.

November 24, 2023 University of Edinburgh 21



Trigger Graphs: Why

– Key to support goal-driven QA over transitive rules.

– Standard bottom-up evaluation:
– may derive logically redundant facts;
– may try to execute rules that derive no facts.

– The above negatively impact the runtime and the memory.
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How: Trigger Graphs

Rules

r(X, Y )→ R(X, Y ) (r1)
R(X, Y )→ T (Y,X, Y ) (r2)

T (Y,X, Y )→ R(X, Y ) (r3)
r(X, Y )→ ∃Z.T (Y,X,Z) (r4)

Facts

→ r(c1, c2)

Bottom-Up evaluation
r(c1, c2)

T (c2, c1, n1) R(c1, c2)

T (c2, c1, c2)

R(c1, c2)

∅

(r4) (r1)

(r2)

(r3)

(r3)
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How: Trigger Graphs
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r(X, Y )→ R(X, Y ) (r1)
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Facts

→ r(c1, c2)

Bottom-Up evaluation
r(X1, X2)

T (X2, X1, Z) R(X1, X2)

T (X2, X1, X2)

R(X1, X2)

∅

(r4) (r1)

(r2)

(r3)

(r3)

November 24, 2023 University of Edinburgh 25



How: Trigger Graphs

Rules

r(X, Y )→ R(X, Y ) (r1)
R(X, Y )→ T (Y,X, Y ) (r2)

T (Y,X, Y )→ R(X, Y ) (r3)
r(X, Y )→ ∃Z.T (Y,X,Z) (r4)

Facts

→ r(c1, c2)

Trigger graph

r1

r2

1
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Trigger graph-based reasoning

TGs delineate the rule executions
– Execute r1 over the input instance.

– Execute r2 over the derivations of r1.

– No other operation is taking place.
Important to node

– Facts are stored inside the nodes, i.e.,
not stored in a single set like in all
bottom-up engines.

– This data separation makes joins run
faster.

Trigger graph

r1

r2

1
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Trigger graph-based reasoning

Rules

r(X, Y )→ A(X) (r1)
r(X, Y )→ A(Y ) (r2)

A(X) ∧ s(X,Z)→ T (Z) (r3)

r1 r2

r3 r3

A(1) A(2)

T (a) T (b)

r(1, 2) s(1, a) s(1, b)
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Trigger Graphs for Linear Rules

– Phase I: Static TG Computation.
– Compute a representative instance B∗, i.e., one that captures all

possible rule execution paths.
– Compute a plan G that mimics the rule execution when reasoning

over B∗.

– Phase II: Redundancy Elimination.
– Eliminate nodes that lead to redundanct facts (via detecting

preserving homomorphisms).

– Phase III: Reasoning.
– The computed TG can be used to reason over all input instances.
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Trigger Graphs for Linear Rules: Complexity

Let P be a linear program that admits a finite universal model.

Theorem (Complexity)

Computing a TG for P is double exponential in P . If the arity of the predicates in P is
bounded, the computation time is (single) exponential.
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Reasoning over Linear Rules

Total materialization times in s
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1 0.3
6 5 5

22

4

44

78

12
18

3

36

72

10
0.2 0.1 0.8 0.4 0.3

VLog RDFox X TGs

Pick memory in GB

LUBM-LI OUBM-LI DBpedia-LI Claros-LI React.-LI

1.6

0.2

2.5 2.8

1.3

2.3

0.7

3

3.9

1.4

5

3.5 3.7

5
4.4

1.6

0.2

2.6 2.5

1.3

VLog RDFox X TGs

November 24, 2023 University of Edinburgh 31



Trigger Graphs for Datalog Rules

TGs for Linear Rules
– Static TG computation.

– Use the pre-computed
TG to reason over all
instances.

– Redundancy elimination
via detecting preserving
homomorphisms.

TGs for Datalog Rules
– Interleave TG creation

with reasoning.

– The computed TG can be
used to reason over the
given instance only.

– Redundancy elimination
via query containment [2].
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Trigger Graphs for Datalog Rules: Example

Rules

r(X,Y )→ S(X,Y,X) (1)
a(X) ∧ r(X,Y )→ S(X,X, Y ) (2)

S(X,Y, Z)→ A(X) (3)

r1 r2

r3 r3

S(1, 2, 1) S(1, 1, 2)

A(1) A(1)

r(1, 2) a(1)
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Trigger Graphs for Datalog Rules: Example

r1 r2

r3 r3

Trigger Graph

v3 v4

Query for v3 Query for v4

Q(X) = ∃Y.r(X, Y ) Q′(X) = ∃Y.a(X) ∧ r(X, Y )

r(X, Y )→ S(X, Y,X) a(X) ∧ r(X, Y )→ S(X,X, Y )

S(X, Y, Z)→ A(X) S(X, Y, Z)→ A(X)

r1

r3

r2

r3
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Trigger Graphs for Datalog Rules: Results

Let P be a Datalog program.

Theorem (Soundness)

For a TG G for P , minDatalog(G) is a TG for P .

Theorem (Minimality)

Any TG for P has at least as many nodes as minDatalog(G).

Theorem (Complexity)

Deciding whether G is a TG of minimum size for P is co-NP-complete.
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More: TG-Aware Rule Execution Strategy
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Datalog Reasoning with Trigger Graphs

1B 2B 4B 8B 17B
Runtime (s) 203 226 520 993 2272
Memory (GB) 23 34 49 98 174
#IDPs 1B 2B 5B 10B 20B

Table: Reasoning over LUBM for 1B–17B of database triples.

November 24, 2023 University of Edinburgh 37



Datalog Reasoning with Trigger Graphs

Materialization times in s
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Datalog Reasoning with Trigger Graphs

Materialization times in minutes
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Reasoning at Scale: How
-Lineage Trigger Graphs

Efthymia Tsamoura, Jaehun Lee, and Jacopo Urbani. Probabilistic Reasoning as Scale: Trigger Graphs to the Rescue. In
SIGMOD, 2023 (to appear).
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Aim

– Develop highly-scalable reasoning techniques that support uncertainty.

– Adopt well-established semantics.
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Key Challenge: Complexity

Rules

e(X, Y )→ p(X, Y )

p(X,Z) ∧ p(Z, Y )→ p(X, Y )

Facts

→ e(a, b) → e(a, c)

→ e(b, c) → e(c, b)

Derivations

e(a, b) e(b, c) e(a, c) e(c, b)

p(a, b)τ1 p(b, c)τ2 p(a, c)τ3 p(c, b)τ4

p(a, c)τ5 p(b, b)τ6 p(a, b)τ7
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Prior Art: Key Limitations

– Relies on provenance semirings [5], i.e., associates a Boolean formula
to each derivation.
– Super-polynomial size blowup in data complexity: any monotone

formula to test connectivity in a graph with n nodes has size nΩ(logn)

(lower bound holds even for undirected graphs) [8].

– Requires Boolean checks at each reasoning step for termination.
– Runtime bottleneck.

Efthymia Tsamoura, Victor Gutierrez-Basulto, and Angelika Kimmig. Beyond the Grounding Bottleneck: Datalog Techniques
for Inference in Probabilistic Logic Programs. In AAAI, pages 10284-10291, 2020.
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Probabilistic Reasoning via Provenance Semirings

R Derivation@R Comparison Formula@R

1 e(a, b) ∅ e(a, b)

2 e(a, c) ∧ e(c, b) e(a, c) ∧ e(c, b)
?≡ e(a, b) e(a, c) ∧ e(c, b) ∨ e(a, b)

e(a, b) e(b, c) e(a, c) e(c, b)

p(a, b)τ1 p(b, c)τ2 p(a, c)τ3 p(c, b)τ4

p(a, c)τ5 p(b, b)τ6 p(a, b)τ7
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Lineage Trigger Graphs

– Efficient maintenance of
derivation history.
– Natural for TGs.
– Storing pointer offsets.

– Reduces termination checks for
detecting cyclic derivations!
– No Boolean checks are

required!

Derivations

e(a, b) e(b, c) e(a, c) e(c, b)

p(a, b)τ1 p(b, c)τ2 p(a, c)τ3 p(c, b)τ4

p(a, c)τ5 p(b, b)τ6 p(a, b)τ7
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Lineage Trigger Graphs: (Adaptive) Provenance Circuits

– Extended the notion of provenance circuits [3] to allow a more
space-efficient reasoning:
– Polynomial size representation.
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Probabilistic Datalog Reasoning with Trigger Graphs

Q1 Q2 Q3 Q4 Q5

1

10

100

1K

Scallop(1) Scallop(20) Scallop(30) LTGs

Figure: Time in seconds for goal-driven QA over sample queries from VQAR [7].
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Cool Research not Covered
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Goal-driven QA over existential rules with equality (AAAI 2018)
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Figure: Time in msec to answer the ChaseBench queries [1].

Michael Benedikt, Boris Motik, and Efthymia Tsamoura. Goal-Driven Query Answering over Existential Rules with Equality.
In AAAI, pages 1761–1770, 2018.
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Thanks!
Contact info: efi.tsamoura@samsung.com.
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