INFR11215 Knowledge Graphs

Combined KG Reasoning

Jeff Z. Pan
http://knowledge-representation.org/j.z.pan/

Lecture Outline

• Motivation
• Discussions on Schema-aware KG Embedding
Motivations

• Pros of KG embeddings:
 – Help to address the incompleteness
 – Useful in many downstream applications
 like link prediction, similarity search and
 question answering

• Cons of KG embeddings:
 – typically only consider relation assertions
 – do not consider schema
 • Why is it a problem?
 • If it is a problem, how to address it?

Lecture Outline

• Motivation

• Discussions on Schema-aware KG embedding
Brief Summary of KGE for LP

- Link prediction: can be cast as a learning to rank problem

\[\phi_{spo} = \phi((s, p, o); \Theta) \]

- KGE for link prediction: 2-layer neural network architecture
 - Encoding layer
 - Scoring layer

\[\phi((s, p, o); \Theta) = \phi_p(e_s, e_o) \]
\[e_s, e_o = \psi(s), \psi(o) \]

- Loss function require both positive and negative samples

Why Ignoring Schema is a Problem?

- Closed world assumption
- Limited expressiveness of KGE models
- Inconsistency
Closed World Assumption

- Key question: how to pick samples
 - Positive samples are easy
 - Negative samples are a lot trickier, as all input triples are positive
- Closed World Assumption (CWA) is used to pick negative samples:
 - given a KG G, its schema S and a new triple \((s,p,o)\): if \((s,p,o) \in G\), then \((s,p,o)\) is correct; otherwise, \((s,p,o)\) is incorrect
 - Procedure: given any \((s,p,o)\), replace \(s\) with \(s'\) s.t. \((s',p,o) \notin G\)

Example: Closed World Assumption

Example 1: if the KG contains the triple \((John, likes, Ice_Cream)\), under the CWA, the negative sample \((John, likes, Pizza)\) would be unequivocally considered as false, suggesting that John does not like pizza.

Example 2: Given a positive triple \((English_Americans, population_place, New_England)\) in DB15K dataset, the CWA negative sampling strategy replaces the tail entity with random entities, such as:
- \((English_Americans, population_place, Hawaii)\)
- \((English_Americans, population_place, Arizona)\)
- \((English_Americans, population_place, New York metropolitan area)\)
- \((English_Americans, population_place, Vietnam)\)
- \((English_Americans, population_place, Uruguay)\)
- \((English_Americans, population_place, Seattle metropolitan area)\)
- \((English_Americans, population_place, Chicago metropolitan area)\)
- \((English_Americans, population_place, Guatemala)\)

However, there are a few false negative triples.
Alternatives to Closed World Assumption

- Schema-aware Closed World Assumption (SCWA): given a KG G, its schema S and a new triple (s,p,o): if (s,p,o) ∈ Closure(G U S), then (s,p,o) is correct; otherwise, (s,p,o) is incorrect (Wang et al. 2023)

- Open World Assumption: given a KG G, its schema S and a new triple (s,p,o): if S U G U (s,p,o) ꞁ ≠ ꞁ, then (s,p,o) is correct; otherwise, (s,p,o) is incorrect

Limited expressiveness

- Fully expressiveness not enough
 - Given T* positive and T- negative sample sets
 - ∀(s,p,o) ∈ T*, Φ_p(e_s, e_o) ≤ λ_p
 - ∀(s,p,o) ∈ T-, Φ_p(e_s, e_o) > λ_p

<table>
<thead>
<tr>
<th>Model</th>
<th>Symmetry</th>
<th>Antisymmetry</th>
<th>Inversion</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>TransE</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TransX</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DistMult</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>ComplEx</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>RotatE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

From Sun et al. - RotatE: Knowledge Graph Embeddings by Relational Rotation in Complex Space
Inconsistency

Exploration for dbo:locationRange dbo:organization
1) dbo:Broadcaster DisjointWith dbo:location
 In NO other justifications
2) dbpedia:Lower_Hutt dbo:broadcastArea dbpedia:Wellington
 In NO other justifications
3) dbo:broadcastArea Domain dbo:Broadcaster
 In NO other justifications
4) dbpedia:Lower_Hutt Type dbo:location
 In NO other justifications

Note: the two relation assertions have been removed in latest DBpedia release, but still exist in DB15K dataset.

How to Address the Expressiveness Issue

- Incorporate schema information in loss function good approaches expected to be applicable to different KGE methods

- Combine symbolic reasoning with KGE Use OWA to check if the triples learned from KGE methods are consistent with the schema
 - Bonus: consistent triples can be combined with existing triples and schema to infer further triples
Incorporate Schema Information in Loss Function

- Example schema axioms:
 - Relation equivalence: \(p \equiv q \) (\(p \sqsubseteq q, q \sqsubseteq p \))
 \[
 \phi((s, p, o); \Theta) = \phi((s, q, o); \Theta) \quad \forall s, o \in \mathcal{E}.
 \]
 - Inverse relations: \(p \equiv q' \) (\(p \sqsubseteq q', q' \sqsubseteq p \))
 \[
 \phi((s, p, o); \Theta) = \phi((o, q, s); \Theta) \quad \forall s, o \in \mathcal{E}.
 \]
- Scalable implementation of such revised scoring functions often demands KGE dependent revisions
- Optional reading:
 https://link.springer.com/chapter/10.1007/978-3-319-71249-9_40

Combine Symbolic Reasoning with KGE

- KGE training with ACC for sampling
- Predict
- Expanded KG
- ACC
- Updated KGE

- Output KG
- Schema-correct triples
- Schema-inconsistent triples (Neg candidates for next round training)
- Schema-correct triples (Pos)
- Schema-inconsistent triples (Neg)

ACC: Approximated Consistency Checking

Optional reading: https://knowledge-representation.org/z.z.pan/pub/SICKLE2023.pdf

- Schema-correct: consistent with the schema of the Knowledge Graph and satisfying the constraints, such as domain and range.
- Schema-unknown: they are consistent with the schema, but not yet satisfying the constraints, due to lack of some type information for their heads or tails, i.e., neither schema-correct nor schema-incorrect.
- Schema-inconsistent: not consistent with the schema.
Lecture Outline

- Motivation: KGE lack significant expressiveness
- Introduction: Limitations of classic KGE methods
- Focus: Solutions of these limitations
- Practical
 - Combine symbolic reasoning with KGE
 - Schema aware zero shot learning
- Next time we introduce tractable Description Logic EL