

INFR11215 Knowledge Graphs

DL Reasoning with Tableaux Algorithms

Jeff Z. Pan

http://knowledge-representation.org/j.z.pan/

[Reading: Baader et al., sections 2.3, 4.1 and 4.2]

1

ALC Knowledge Base

Let C and R be disjoint sets of concept names and role names, respectively.

 $\mathcal{ALC}\text{-}\mathrm{concept}$ descriptions are defined by induction:

- If $A \in \mathbb{C}$, then A is an \mathcal{ALC} -concept description.
- If C,D are \mathcal{ALC} -concept descriptions, and $r \in \mathbf{R}$, then the following are \mathcal{ALC} -concept descriptions:
 - $C \sqcap D$ (conjunction)
 - $C \sqcup D$ (disjunction)
 - $\neg C$ (negation)
 - ∀r.C (value restriction)
 - $\exists r.C$ (existential restriction)

Abbreviations:

- $\ \top := A \sqcup \neg A \ (\mathsf{top})$
- $\perp := A \sqcap \neg A$ (bottom)
- $-C \Rightarrow D := \neg C \sqcup D$ (implication)

 $\mbox{\it ALC}$ Knowledge Base K=(T,A), where T is an TBox (containing only class subsumption axioms C \sqsubseteq D only) and A is an ABox

[credit: F Baader]

Knowledge Graphs Jeff Z. Pan

Class Axioms in ALC (1)

- SubClassOf axioms
 - DL syntax: C1 ⊆ C2
 - FOL syntax: \forall x [C1(x) -> C2(x)]
- Equivalent Class axioms
 - DL syntax: C1 ≡ C2
 - Or, C1⊑C2, C2⊑ C1

Knowledge Graphs Jeff Z. Pan

3

3

ALC Class Axioms (2)

- They are also called axioms, or schema axioms
- Disjoint Class axioms
 - DL syntax: C1 □ ¬C2
- Exhaustive Class axioms
 - DL syntax: C \sqsubseteq C1 \sqcup C2

Knowledge Graphs Jeff Z. Pan

4

ALC Property Axioms

- Property Domain axioms
 - DL syntax: ∃r ⊑ C
 - FOL syntax: \forall x[\exists y.r(x,y) -> C(x)]
- Property Range axioms
 - DL syntax: ∃r ⊆ C
 - DL Syntax: \top \sqsubseteq \forall r.C
 - FOL syntax: \forall x[\exists y.r(y,x) -> C(x)]

Knowledge Graphs Jeff Z. Pan

.

5

ALC Assertions

- Class Assertions
 - DL syntax: e:A, or A(e)
 - RDF Notation 3 (N3) syntax: [e rdf:type A .]
- · Property Assertions
 - DL syntax: (e1,e2):r, or r(e1, e2)
 - RDF N3 syntax: [e1 r e2 .]
- Equality / Inequality assertions
 - e1 = e2
 - e1 ≠ e2

Knowledge Graphs Jeff Z. Pan

6

DL Interpretations

- An interpretation I is written as (△¹, •¹)
 - $-\Delta^{I}$ is the non-empty domain
 - •¹ is the interpretation function
 - all individuals (inc. unnamed ones) are members of the domain: $o^I \in \Delta^I$
 - all classes are subsets of the domain $A^{\text{I}} \subseteq \Delta^{\text{I}}$
 - e.g., Employee^I= {E1, E2, E3, E4}
 - all properties are subsets $R^I \subseteq \Delta^I \times \Delta^I$

```
e.g., Works-for'= {<E1,P1>, <E2,P1>, <E2,P2>, <E3,P1>, <E3,P2>, <E4,P2>}
```

- Interpretation function allows us to consider all possible assignment of class and property memberships
 - all possible databases for the given schema

Knowledge Graphs Jeff Z. Pan

7

7

DL Interpretations

- KG schema (Ontology)
 - President

 Politician
- Question: does the following interpretation satisfy the above axiom?
 - ∆¹ = {Obama, Trump, Biden}
 - President^I = {Obama, Trump, Biden}
 - Politiciant^I = {Obama, Biden}

Knowledge Graphs Jeff Z. Pan

8

Q

Lecture Outline

- Motivation
- · Overview of Tableau Algorithms
- More details on Tableau Algorithms
- Practical

Knowledge Graphs Jeff Z. Pan

11

11

Motivations

- It is not an easy task to come up with decision procedures for reasoning services even for simpler DLs
 - Some early algorithms are incomplete
- One stone few birds
 - One algorithm for four reasoning services

Knowledge Graphs Jeff Z. Pan

12

Lecture Outline

- Motivation
- Overview of Tableau Algorithms
- More details on Tableau Algorithms
- Practical

Knowledge Graphs Jeff Z. Pan

13

13

Ontology and Reasoning

- knowledge and data that
- we know that we know
- we know that we don't know or partially know
- Reasoning helps to find out
 - things that we might not know that we know
- Combining reasoning and learning
 - things that we might not know that we don't know

Knowledge Graphs Jeff Z. Pan

15

15

DL Reasoning Services

- KB consistency checking
 - An KB is consistent, if there exist an interpretation that satisfies all axioms in KB

- $-\,$ A class description C is satisfiable w.r.t. a KB, if there exist an interpretation (model) I of KB, such as C^I is non-empty
- Class subsumption checking
 - C is subsumed by D satisfiable w.r.t. a KB, if in all interpretations (models) I of KB, C^I is subfset of D^I
- Instance Checking
 - − KB infers C(a) [r(a,b)] if, in all interpretations (models) of KB, a \in C¹ [(a¹, b¹) \in r¹]
- All reducible to KB consistency checking

Knowledge Graphs Jeff Z. Pan

16

Tableaux Algorithm

- The first sound and complete algorithm for expressive DLs
 - Ontology Consistency Checking
- · Basic idea: Build an interpretation
 - A **tableau** is a representative of an interpretation
 - Δ^{I} is the non-empty domain
 - We can construct an interpretation based on a tableau

Knowledge Graphs Jeff Z. Pan

17

17

Tableaux Algorithm: Key Steps

- 1. Initialise the tableau with individual axioms
 - the initial tableau might not satisfy all the axioms
- 2. Repair the initial tableau by applying expansion rules
 - so as to add new information into the tableau
 - this might require backtracking
- 3. If the tableau satisfy all the axioms, returns Consistent
- 4. If every possible attempt repair results in some contradiction, returns Inconsistent
 - Contradiction: o: A, o: ¬A, or o: ⊥ in the expanded ABox, (⊥ is bottom, interpreted as empty set)

Knowledge Graphs Jeff Z. Pan

18

THE UNIVERSITY of EDINBURGH

NNF: Negated Normal Form

- · Negated Normal Form (NNF)
 - If a class is in NNF, negations only appear in front of named classes
 - E.g., ¬Person is in NNF
 - but ¬(Chinese □ English) is not in NNF
- In tableau algorithm, all the input classes should be in NNF
 - We can make use of the following table to transform inputs into NNF

$$\neg \exists r.C \equiv \forall r. \neg C$$

$$\neg \neg C \equiv C$$

$$\neg (C \sqcap D) \equiv \neg D \sqcup \neg C$$

$$\neg (C \sqcup D) \equiv \neg D \sqcap \neg C$$

$$\neg \Rightarrow (n+1)r.C \equiv \Rightarrow (n+1)r.C$$

Knowledge Graphs Jeff Z. Pan

19

19

THE UNIVERSITY of EDINBURGH **Expansion Rules** The □-rule **Condition:** A contains $a:(C \sqcap D)$, but not both a:C and a:D $A \longrightarrow A \cup \{a:C,a:D\}$ The ⊔-rule Condition: A contains $a:(C \sqcup D)$, but neither a:C nor a:D $\mathcal{A} \longrightarrow \mathcal{A} \cup \{a: X\}$ for some $X \in \{C, D\}$ Action: The ∃-rule Condition: A contains $a:(\exists r.C)$, but there is no b with $\{(a,b):r,b:C\}\subseteq \mathcal{A}$ Action: $A \longrightarrow A \cup \{(a,d): r,d:C\}$ where d is new in A The ∀-rule Condition: A contains $a:(\forall r.C)$ and (a,b):r, but not b:C $A \longrightarrow A \cup \{b : C\}$ **Knowledge Graphs** [credit: F Baader] 20 Jeff Z. Pan

Lecture Outline

- Motivation
- · Overview of Tableau Algorithms
- · More details on Tableau Algorithms
- Practical

Knowledge Graphs Jeff Z. Pan

25

25

S-rule for Simple Axioms

- Simple axioms
 - A⊑C where A is a named class
 - No cycles involve A
 - **≭** such as A ⊑∃R.A
- Expansion rule for simple axioms
 - If x:A is ABox and $A \sqsubseteq C$ is in TBox
 - Then add x:C into ABox

Knowledge Graphs Jeff Z. Pan

26

THE UNIVERSITY of EDINBURGH

Example: S-rule

- Check if the following ontology is consistent
 - 1. English <u>□</u> ¬Chinese
 - 2. Confucian <u>□</u>Chinese

 - 4. Bill : Confucian
- 5. Initialise the tableau; A={Bill: Confucion} (from 4)
- 6. Apply S-rule on 2 and 3, A={Bill: Confucion, Bill: Chinese, Bill: English}
- 7. Apply S-rule on 1, A={Bill: Confucion, Bill: Chinese, Bill: English, Bill: _Chinese}.
- 8. Since there is a clash and no backtrack, the ontology is inconsistent

Knowledge Graphs Jeff Z. Pan

27

27

Expansion Rules for GCI

- General Class Inclusion (GCI)
 - C
 □ D, where C is a class desription and not a named class
 - Idea: turn the left handside into ⊤(top), thus it is applicable to every individual in the tableau
 - How?
 - Since C □¬C is equivalent to ¬, we can turn C □ D into ¬□D □¬C
- · GCI is expensive to deal with
 - since it adds a disjunctive to every individual
- Don't forget to use NNF

Knowledge Graphs Jeff Z. Pan

29

29

Class Satisfiability Checking

- Class satisfiability checking can be reduced to ontology consistency checking
 - by assuming the target class C has an instance x
 - hence adding x:C into O: O'=O U {x:C}
 - If O' is inconsistent, then the assumption is invalid, so C is insatisfiable
 - Otherwise, C is satisfiable

Knowledge Graphs Jeff Z. Pan

Blocking: Ensuring Termination

- Expansion can be applicable forever
 - We need to block the expansion on e.g. cyclic axioms
- Blocking
 - Let Sub(x) be the subset of A that includes all class asserstions about x
 - Condition: Sub(y) ⊆ Sub(x) for some ancestor x
 (blocking node) and predecessor y (blocked node)
 - Intuitively, this means that the same constraints have been dealt with before

Knowledge Graphs Jeff Z. Pan

31

31

Example: Blocking

- Example:
 - Given the ontology
 - 1. Person □∃friend.Person
 - Check if Person is satisfiable
- Construct a tableau
 - 2. Initialise the ABox A={x:Person}
 - 3. Apply S-rule on 1, A={x:Person, x:∃friend.Person}
 - 4. Apply \exists -rule, A={x:Person, x: \exists friend.Person, (x,x1):friend, x1:Person}
 - 5. Sub(x1) \subseteq Sub(x), so x1 is blocked and replaced by x, A={x:Person, x:∃friend.Person, (x,x):friend}
 - 6. We can construct an interpretation as follows:
 - $\Delta^{I}=\{x\}$
 - Person^I = {x}
 - friend = {<x,x>} Knowledge Graphs Jeff Z. Pan

32

Class Instance Checking

- Reducing Class Instance Checking to Ontology Consistency Checking
 - If O entails C(x), then in every interpretation I of O, we have x^I is in C^I
 - It means OU {¬C(x)} inconsistent

Knowledge Graphs Jeff Z. Pan

35

Male(nicolas)

35

Example

- If an ontology O entails Male (nicolas)
 - then in every interpretation I of O
 - we have nicolas¹ ∈ Male¹
- Now if we extend O to O' with a new axiom
 - ¬Male(nicolas) (*)
- How to construct an interpretation I' for O'?
 - as all interpretations of O' should satisfy O
 - we could start from interpretations of O
- It is easy to see that I' does not exist
 - If I' does not satisfy O, then it does not satisfy O' either
 - If I' satisfies O, then it does not satisfy ¬Male(nicolas)

Knowledge Graphs Jeff Z. Pan

Class Instance Checking

- · Question: given the following ontology O,
 - OldLady ∀ hasPet.Cat
 - OldLady(Minnie)
 - hasPet(Minnie, Tom)
- · Does O entail Tom: Cat?

- Initial the tableau: A={Minnie:OldLady, <Minnie,Tom>:hasPet,Tom: ¬ Cat}
- 3. Apply S-rule on axiom 1 with Minnie: A1=A U {Minnie: ∀hasPet.Cat}
- 4. Apply ∀-rule on Minnie: A2=A1 U {Tom:Cat} clash, not backtractable
- 5. Thus the extended ontology is inconsistent
- 6. And the entailment holds

Knowledge Graphs Jeff Z. Pan

37

37

Example: Consistency Checking

 $\mathcal{T} \coloneqq \big\{ \neg (A \sqcup B) \sqsubseteq \bot, \quad A \sqsubseteq \neg B \sqcap \exists r.B, \quad D \sqsubseteq \forall r.A, \quad B \sqsubseteq \neg A \sqcap \exists r.A \big\}$

- . Rewrite the first axiom into $\top \sqsubseteq A \sqcup B$
- 2. Since any individual (such as x) is an instance of \top , x must be an instance of $A \sqcup B$
- 3. Initialise the tableau: A1={x: A⊔B}
- 4. Apply \Box -rule on x: A2=A1 U {x:A}
- 5. Apply S-rule on axiom2 with x: A3=A2 U $\{x: \neg B \sqcap \exists r.B\}$
- 6. Apply \sqcap -rule on x: A4=A3 U {x: \neg B, x: \exists r.B}
- 7. Apply ∃-rule on x: A5=A4 U {<x,x1>:r, x1:B}
- 8. Apply GCI-rule on axiom 1 with x1: A6=A5 U $\{x1: A \sqcup B\}$
- 9. Apply ⊔-rule on x1: A7=A6 U {x1:B}
- 10. Apply S-rule on axiom 4 with x1: A8=A7 U $\{\neg A \sqcap \exists r.A\}$
- 11. Apply \sqcap -rule on x1: A9=A8 U { \neg A, \exists r.A}
- 12. Apply \exists -rule on x1: A10=A9 U {<x1,x2>:r, x2:A}
- 13. x2 is blocked by x
- All axioms have been dealt with, and there is no contradiction, so that the TBox is consistent Knowledge Graphs

Jeff Z. Pan

38

THE UNIVERSITY of EDINBURGH

Lecture Outline

- Motivation: Sound and complete reasoning in DL
- · Introduction: Tableau algorithm
- Focus: The ALC DL
- Exercises (Mid-term Quiz next week)
 - Check the consistency of the following knowledge graph:

$$\mathcal{A}_{ex} = \{a : A \sqcap \exists s.F, (a,b) : s, \\ a : \forall s.(\neg F \sqcup \neg B), (a,c) : r, \\ b : B, c : C \sqcap \exists s.D\}.$$

Knowledge Graphs Jeff Z. Pan

39