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DL Reasoning with Tableaux 
Algorithms

Jeff Z. Pan
http://knowledge-representation.org/j.z.pan/

[Reading: Baader et al., sections 2.3, 4.1 and 4.2]
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ALC Knowledge Base

[credit: F Baader]

Knowledge Base K=(T,A), where T is anTBox (containing only class subsumption axioms  
C D only) and A is an ABox 
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Class Axioms in ALC (1)

• SubClassOf axioms
– DL syntax: C1    C2
– FOL syntax: "x [C1(x) -> C2(x)]

• Equivalent Class axioms
– DL syntax: C1     C2
– Or, C1   C2, C2    C1
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ALC Class Axioms (2)

• They are also called axioms, or schema 
axioms

• Disjoint Class axioms
– DL syntax: C1        C2

• Exhaustive Class axioms
– DL syntax: C      C1    C2 
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ALC Property Axioms 

• Property Domain axioms
– DL syntax: $r    C
– FOL syntax: "x[$y.r(x,y) -> C(x)]

• Property Range axioms
– DL syntax: $r– C
– DL Syntax:         "r.C
– FOL syntax: "x[$y.r(y,x) -> C(x)]
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ALC Assertions
• Class Assertions

– DL syntax: e:A, or A(e)
– RDF Notation 3 (N3) syntax: [e rdf:type A .]

• Property Assertions
– DL syntax: (e1,e2):r, or r(e1,  e2)
– RDF N3 syntax: [e1 r e2 .]

• Equality / Inequality assertions
– e1 = e2
– e1 ≠ e2
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DL Interpretations
• An interpretation I is written as (DI, �I) 
– DI is the non-empty domain  
– �I is the interpretation function  

• all individuals (inc. unnamed ones) are members of the domain: oI Î DI

• all classes are subsets of the domain AI Í DI

– e.g., EmployeeI= {E1, E2, E3, E4}
• all properties are subsets RI Í DI ×DI 

e.g., Works-forI= {<E1,P1>, <E2,P1>, <E2,P2>, <E3,P1>, <E3,P2>, 
<E4,P2>}

• Interpretation function allows us to consider all possible 
assignment of class and property memberships
– all possible databases for the given schema
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DL Interpretations

• KG schema (Ontology)
– President ⊑ Politician

• Question: does the following interpretation 
satisfy the above axiom?
– DI = {Obama, Trump, Biden}
– PresidentI = {Obama, Trump, Biden}
– PoliticiantI = {Obama, Biden}
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Interpretations of Restrictions

Given an interpretation, we can compute the semantic 
counterparts of class descriptions
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Interpretations of Restrictions

Given an interpretation, we can compute the semantic 
counterparts of class descriptions
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Lecture Outline

• Motivation
• Overview of Tableau Algorithms
• More details on Tableau Algorithms
• Practical 
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Motivations 
• It is not an easy task to come 

up with decision procedures for 
reasoning services even for 
simpler DLs
– Some early algorithms are 

incomplete
• One stone few birds

– One algorithm for four reasoning 
services
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Lecture Outline

• Motivation
• Overview of Tableau Algorithms
• More details on Tableau Algorithms
• Practical 
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Architecture of Knowledge Based 
Systems
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Ontology and Reasoning  

• Ontology contains
– knowledge and data that
– we know that we know
– we know that we don’t know or partially know

• Reasoning helps to find out
– things that we might not know that we know

• Combining reasoning and learning
– things that we might not know that we don’t know
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DL Reasoning Services

• KB consistency checking 
– An KB is consistent, if there exist an interpretation that 

satisfies all axioms in KB

• Class satisfiability checking 
– A class description C is satisfiable w.r.t. a KB, if there exist an 

interpretation (model) I of KB, such as CI is non-empty

• Class subsumption checking
– C is subsumed by D satisfiable w.r.t. a KB, if in all 

interpretations (models) I of KB, CI is subfset of DI

• Instance Checking  
– KB infers C(a) [r(a,b)] if, in all interpretations (models) of KB, a 

Î CI  [ (aI, bI) Î rI ]

• All reducible to KB consistency checking
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Tableaux Algorithm

• The first sound and complete algorithm for 
expressive DLs
– Ontology Consistency Checking

• Basic idea: Build an interpretation
– A tableau is a representative of an interpretation

• DI is the non-empty domain  
– We can construct an interpretation based on a 

tableau
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Tableaux Algorithm: Key Steps

1. Initialise the tableau with individual axioms
– the initial tableau might not satisfy all the axioms

2. Repair the initial tableau by applying 
expansion rules
– so as to add new information into the tableau
– this might require backtracking

3. If the tableau satisfy all the axioms, returns 
Consistent

4. If every possible attempt repair results in 
some contradiction, returns Inconsistent 
– Contradiction: o: A, o: ¬A, or o: ^ in the expanded 

ABox, (^ is bottom, interpreted as empty set)
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NNF: Negated Normal Form
• Negated Normal Form (NNF)

– If a class is in NNF, negations only appear in front of named classes
– E.g., ¬Person is in NNF
– but ¬(Chinese    English) is not in NNF

• In tableau algorithm, all the input classes should be in NNF
– We can make use of the following table to transform inputs into 

NNF
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Expansion Rules

[credit: F Baader]
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-rule: A Non-deterministic Rule for 
backtracking

[credit: F Baader]
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$-rule Create New Individuals

[credit: F Baader]

• In the expanded ABox,  new individual created by the $-
rule form trees, whose roots are in the original ABox
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Tableaux Algorithm: Example (without 
TBox)

[credit: F Baader]
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Tableaux Algorithm: Example (without 
TBox)

• DI={a,b,c} 

• SmartI = {b}, StudiousI = {c}

• attendedI = {<a,b>,<a,c>}
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Lecture Outline

• Motivation
• Overview of Tableau Algorithms
• More details on Tableau Algorithms
• Practical 
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S-rule for Simple Axioms

• Simple axioms
– A C where A is a named class
– No cycles involve A

such as A $R.A

• Expansion rule for simple axioms
– If x:A is ABox and A C is in TBox

– Then add x:C into ABox
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Example: S-rule

• Check if the following ontology is consistent
1. English     ¬Chinese

2. Confucian   Chinese

3. Confucian English

4. Bill : Confucian 

L(x-Bill)={Confucian}

5. Initialise the tableau; A={Bill: Confucion} (from 4)
6. Apply S-rule on 2 and 3, A={Bill: Confucion, Bill: Chinese, Bill: 

English} 
7. Apply S-rule on 1, A={Bill: Confucion, Bill: Chinese, Bill: English, Bill: 

¬Chinese}. 
8. Since there is a clash and no backtrack, the ontology is inconsistent
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Expansion Rules for Acyclic TBoxes

• One step beyond simple axioms
– A     C (the same as A    C, C    A)

[credit: F Baader]

S-rule

S--rule
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Expansion Rules for GCI

• General Class Inclusion (GCI)
– C     D, where C is a class desription and not a 

named class
– Idea: turn the left handside into    (top), thus it is 

applicable to every individual in the tableau
– How?

• Since C    ¬C is equivalent to   , we can turn C    D 
into       D     ¬C

• GCI is expensive to deal with
– since it adds a disjunctive to every individual

• Don’t forget to use NNF
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Class Satisfiability Checking

• Class satisfiability checking can be reduced to 
ontology consistency checking
– by assuming the target class C has an 

instance x
– hence adding x:C into O: O’=O U {x:C}
– If O’ is inconsistent, then the assumption is 

invalid, so C is insatisfiable
– Otherwise, C is satisfiable
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Blocking: Ensuring Termination

• Expansion can be applicable forever 
– We need to block the expansion on e.g. cyclic 

axioms

• Blocking
– Let Sub(x) be the subset of A that includes all class 

asserstions about x
– Condition: Sub(y) Í Sub(x) for some ancestor x

(blocking node) and predecessor  y (blocked node)
– Intuitively, this means that the same constraints 

have been dealt with before
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Example: Blocking
• Example: 

– Given the ontology 
1. Person  $friend.Person

– Check if Person is satisfiable
• Construct a tableau

2. Initialise the ABox A={x:Person}
3. Apply S-rule on 1, A={x:Person, x:$friend.Person}
4. Apply $-rule, A={x:Person, x:$friend.Person, (x,x1):friend, 

x1:Person}
5. Sub(x1) Í Sub(x), so x1 is blocked and replaced by  x, 

A={x:Person, x:$friend.Person, (x,x):friend }
6. We can construct an interpretation as follows:

• DI={x} 

• PersonI = {x}

• friendI = {<x,x>}
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Class Subsumption Checking

• Class satisfiability checking can be reduced to 
class (un)satisfiability checking
– O |= C D iff C    ¬D is unsatisfiable

C
¬D D
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Example: Class Subsumption Checking
• Check if the following subsumption holds

– A  ⊓ $r.A ⊓ "r.B A ⊓ $r.B

x0 L(x0)={Confucian}

1. To test the subsumption, we need to check the satisfiability of 
the class     A ⊓ $r.A ⊓ "r.B ⊓¬(A ⊓ $r.B)

2. Turn it into NNF: A ⊓ $r.A ⊓ "r.B ⊓ (¬ A ⊔ " r. ¬ B)

3. Initial the ABox: A1={x: A  ⊓ $r.A ⊓ "r.B ⊓ (¬ A ⊔ " r. ¬ B)}
4. Apply   ⊓-rule: A2=A1 U {x:A, x: $r.A, x: "r.B, x: ¬ A ⊔ " r. ¬ B}

5. Apply $-rule: A3 = A2 U {<x,x1>:r, x1:A}

6. Apply "-rule: A4=A3 U {x1:B}

7. Apply ⊔-rule: A5=A4 U {x: ¬ A}, clash

8. Backtrack, A5’= A4 U {x: " r. ¬ B}

9. Apply "-rule: A6 = A5’ U {x1: ¬ B}, clash, not backtractable
10.The test class description is unsatisfiable, so the subsumption

holds
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Class Instance Checking

• Reducing Class Instance Checking to Ontology 
Consistency Checking
– If O entails C(x), then in every interpretation I of O, we 

have xI is in CI 

– It means                   is inconsistent
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Example
• If an ontology O entails Male (nicolas)

– then in every interpretation I of O
– we have nicolasI Î MaleI

• Now if we extend O to O’ with a new axiom
– ¬Male(nicolas) (*)

• How to construct an interpretation I’ for O’?
– as all interpretations of O’ should satisfy O

– we could start from interpretations of O

• It is easy to see that I’ does not exist
– If I’ does not satisfy O, then it does not satisfy O’ either

– If I’ satisfies O, then it does not satisfy 
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Class Instance Checking

1. Add Tom: ¬ Cat into the ontology O
2. Initial the tableau: A={Minnie:OldLady, <Minnie,Tom>:hasPet,Tom: ¬

Cat}
3. Apply S-rule on axiom 1 with Minnie: A1=A U {Minnie: "hasPet.Cat}
4. Apply "-rule on Minnie: A2=A1 U {Tom:Cat} clash, not backtractable
5. Thus the extended ontology is inconsistent
6. And the entailment holds
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Example: Consistency Checking

1. Rewrite the first axiom into         A     B
2. Since any individual (such as x) is an instance of    , x must be an 

instance of A    B 
3. Initialise the tableau: A1={x: A   B}
4. Apply    -rule on x: A2=A1 U {x:A}
5. Apply S-rule on axiom2 with x: A3=A2 U {x: ¬B    $r.B} 
6. Apply    -rule on x: A4=A3 U {x: ¬B, x: $r.B}
7. Apply $-rule on x: A5=A4 U {<x,x1>:r, x1:B}
8. Apply GCI-rule on axiom 1 with  x1: A6=A5 U {x1: A    B}
9. Apply    -rule on x1: A7=A6 U {x1:B}
10. Apply S-rule on axiom 4 with  x1: A8=A7 U {¬A    $r.A}
11. Apply    -rule on x1: A9=A8 U {¬A, $r.A}
12. Apply $-rule on x1: A10=A9 U {<x1,x2>:r, x2:A}
13. x2 is blocked by x
14. All axioms have been dealt with, and there is no contradiction, so 

that the TBox is consistent
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Lecture Outline
• Motivation： Sound and complete reasoning in DL
• Introduction: Tableau algorithm
• Focus: The ALC DL

• Exercises (Mid-term Quiz next week)
– Check the consistency of the following knowledge graph:
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