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ALC Knowledge Base

Let C and R be disjoint sets of concept names and role names, respectively.
ALC-concept descriptions are defined by induction:
e If A € C, then A is an ALC-concept description.

o If C, D are ALC-concept descriptions, and r € R,
then the following are ALC-concept descriptions:

— C'T' D (conjunction)

= CUD (disjunction) Abbreviations:

— (' (negation) — T:=AL-A (top)

— ¥r.C' (value restriction) = L= A=A (bottom)
— C' = D:=-CUD (implication)

— Jr.C' (existential restriction)

ALC Knowledge Base K=(T,A), where T is anTBox (containing only class subsumption axioms
C C D only) and A is an ABox

. Knowledge Graphs
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Class Axioms in ALC (1)

SubClassOf axioms

— DL syntax: C1C C2

— FOL syntax: Vx [C1(x) -> C2(x)]
* Equivalent Class axioms

— DL syntax: C1=C2

- Or,C1CC2, C2C C1
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ALC Class Axioms (2)

+ They are also called axioms, or schema
axioms

+ Disjoint Class axioms
— DL syntax: C1C —C2

+ Exhaustive Class axioms
— DLsyntax:CE C1UC2

Knowledge Graphs
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ALC Property Axioms

Property Domain axioms
— DL syntax: IrtC
— FOL syntax: Vx[3y.r(x,y) -> C(x)]

Property Range axioms

DL syntax: 3F LG

DL Syntax: TC vr.C

FOL syntax: Vx[3y.r(y,x) -> C(x)]
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ALC Assertions

» Class Assertions
— DL syntax: e:A, or A(e)
— RDF Notation 3 (N3) syntax: [e rdf:itype A ]

* Property Assertions
— DL syntax: (e1,e2):r, or r(e1, e2)
— RDF N3 syntax: [e1re2 ]

« Equality / Inequality assertions
- el=e2

- el#e2

Knowledge Graphs
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DL Interpretations

* An interpretation I is written as
— A! is the non-empty domain
— ol is the interpretation function
« all individuals (inc. unnamed ones) are members of the domain: o' € A!

« all classes are subsets of the domain A'  A!
- e.g., Employee'= {E1, E2, E3, E4}
« all properties are subsets R' < A' *A!

e.g., Works-for'= {<E1,P1>, <E2,P1>, <E2,P2>, <E3,P1>, <E3,P2>,
<E4,P2>}

* Interpretation function allows us to consider all possible

— all possible databases for the given schema

Knowledge Graphs
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DL Interpretations

* KG schema (Ontology)
— President = Politician
* Question: does the following interpretation
satisfy the above axiom?
- = {Obama, Trump, Biden}
— President' = {Obama, Trump, Biden}
— Politiciant' = {Obama, Biden}

Knowledge Graphs
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Interpretations of Restrictions

Given an interpretation, we can compute the semantic
counterparts of class descriptions

r.C={x|3y. (xy)erfAye '}
Vr.C= {x|Vy. (x,y) erf > ye (T}

JparentOf.Male
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Interpretations of Restrictions

Given an interpretation, we can compute the semantic
counterparts of class descriptions

Ir.C={x|3y. (xy)edAye}
C={x|V. (xy) erl>ye T}

VparentOf.Male
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Lecture Outline

Motivation

Overview of Tableau Algorithms

More details on Tableau Algorithms

Practical
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Motivations

 Itis not an easy task to come
up with decision procedures for
reasoning services even for
simpler DLs

— Some early algorithms are

* One stone few birds

— One algorithm for four reasoning
services

Knowledge Graphs
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Lecture Outline

Motivation
» Overview of Tableau Algorithms

More details on Tableau Algorithms

Practical
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Ontology and Reasoning

* Ontology contains
— knowledge and data that

* Reasoning helps to find out
— things that

» Combining reasoning and learning
— things that

Knowledge Graphs
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DL Reasoning Services

KB consistency checking

— An KB is consistent, if there exist an interpretation that
satisfies all axioms in KB

+ Class satisfiability checking

— A class description C is satisfiable w.r.t. a KB, if there exist an
interpretation (model) | of KB, such as C' is non-empty

+ Class subsumption checking

— Cis subsumed by D satisfiable w.r.t. a KB, if in all
interpretations (models) | of KB, C' is subfset of D'

* Instance Checking

— KB infers C(a) [r(a,b)] if, in all interpretations (models) of KB, a
eC'[@,b)er]

Knowledge Graphs
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Tableaux Algorithm

The first sound and complete algorithm for
expressive DLs

— Ontology Consistency Checking

Basic idea: Build an interpretation
— A tableau is a representative of an interpretation
* A is the non-empty domain

— We can construct an interpretation based on a
tableau

Knowledge Graphs
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Tableaux Algorithm: Key Steps

Initialise the tableau with individual axioms
— the initial tableau might not satisfy all the axioms
Repair the initial tableau by applying
expansion rules

— so as to add new information into the tableau

— this might require backtracking

If the tableau satisfy all the axioms, returns
Consistent

If every possible attempt repair results in
some contradiction, returns Inconsistent

— Contradiction: o: A, o: —A, or o: L in the expanded
ABox, (L is bottom, interpreted as empty set)

Knowledge Graphs
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NNF: Negated Normal Form
* Negated Normal Form (NNF)

— If aclass is in NNF,
— E.g., —Personis in NNF
— but —(Chinese 1M English) is not in NNF
 In tableau algorithm, all the input classes should be in NNF

— We can make use of the following table to transform inputs into

NNF
-Ir.C =Vr.-C
--C=C -Vr.C = 3r.-C
-~(CND)=-Du-C -<nr.C = 2(n+ 1)r.C

-(CuD)=-DnNn-C -2(n+ 1)r.C = <nr.C

Knowledge Graphs
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Expansion Rules
The M-rule
Condition: A contains a:(C' 1 D), butnot both a: C'and a : D
Action: A — AU{a:C,a:D}
The U-rule
Condition: A contains « :(C' LI D), but neither @ : C nor a: D
Action: A — AU {a: X} forsome X € {C,D}
The J-rule
Condition: A contains « :(3r.C’), but there is no b with {(a,b):r,b:C} C A
Action: A — AU{(a,d):r,d:C} where d is new in A
The V-rule
Condition: A contains « :(Vr.C') and (a.b):r,butnot b: C'
Action: A — AU{b:C}
[credit: F Baader] K"O}‘:;qg_e]gr:phs 20
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LI-rule: A Non-deterministic Rule for
backtracking

v“'llh

deterministic rule

nondeterministic rule

L] L]

L] L]

. .
l:l complete ABoxes l:l

Return “consistent” iff one of these complete ABoxes is clash-free.

Knowledge Graphs
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d-rule Create New Individuals
* Inthe expanded ABox, new individual created by the 3-
rule form trees, whose roots are in the original ABox
tree of new
individuals
Input
tree of new
individuals
[credit: F Baader] K""}‘:ﬁfié_e]gr:phs 22
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Tableaux Algorithm: Example (without
TBox)

Is the following ABox inconsistent?

{ a :(Jattended.Smart M Jattended.Studious M Vattended.(—Smart L) = Studious)) }

Ir. AN 3r.BNOYr.(-AU-B)

@ Ir.A, Ir.B, ¥r. (=AU -B)

® ©

A B
—AU-B -~AU-B
>A" B - A
[credit: F Baader] Kno}‘:fefdzg_eg;aphs 23
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e bleaux Algorithm: Example (without
TBox)

Is the following ABox inconsistent?

{ a :(Jattended.Smart M Jattended. Studious M Vattended.(—Smart LI —~Studious)) }

Ir.AN3Ir.BOYr.(-AU-B)
@ r.A, Ir.B, ¥r.(~AU-DB)

®

A
—~AU-B

=>A" B -A
e Al={ab,c}

* Smart! = {b}, Studious' = {c}

* attended'= {<a,b>,<a,c>}
Knowledge Graphs
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Lecture Outline

Motivation

Overview of Tableau Algorithms

More details on Tableau Algorithms

Practical
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S-rule for Simple Axioms

+ Simple axioms
— ACC where A is a named class

— No cycles involve A
X such as A E3R.A

+ Expansion rule for simple axioms
— If x;A'is ABox and Ac C is in TBox
— Then add x:C into ABox

Knowledge Graphs
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Example: S-rule

» Check if the following ontology is consistent
English C —Chinese

1.

2. Confucian CChinese
3. Confucian CEnglish
4,

Bill : Confucian

the tableau; A={Bill: Confucion} (from 4)
6. Apply S-rule on 2 and 3, A={Bill: Confucion, Bill: Chinese, Bill:
English}
7. Apply S-rule on 1, A={Bill: Confucion, Bill: Chinese, Bill: English, Bill:
—~Chinese}.
8. Since there is a clash and no backtrack, the ontology is

Knowledge Graphs
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Expansion Rules for Acyclic TBoxes

* One step beyond simple axioms
— A=C (thesameas A CC, C CA)

The =;-rule

S-rule Condition: a:A€e A, A=CeT,anda:C ¢ A
Action: A — AU{a:C}

The =-rule )
_( v
Condition: a:="A€ A, A=C e T,anda:-C ¢ A : ;
7 # Negation normal form
Action: A — AU{a:~C} of -’
. ‘ " Knowledge Graphs -
[credit: F Baader] "().‘]‘e;»zepa:fp ’ 28

28

14



- THE UNIVERSITY
A&V of EDINBURGH

Expansion Rules for GCI

* General Class Inclusion (GCl)

— C C D, where C is a class desription and not a
named class

— ldea: turn the left handside into T (top), thus it is
applicable to every individual in the tableau

— How?

» Since C LU—C is equivalent to T, we can turn CC D
intoTED L -C

* GCl is expensive to deal with
— since it adds a disjunctive to every individual

* Don’t forget to use NNF

Knowledge Graphs
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Class Satisfiability Checking

+ Class satisfiability checking can be reduced to
ontology consistency checking

— by the target class C has an
instance x

— hence adding x:C into O: O’=0 U {x:C}

— If O’is inconsistent, then the assumption is
invalid, so C is

— Otherwise, C is

Knowledge Graphs
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Blocking: Ensuring Termination

» Expansion can be applicable forever

— We need to block the expansion on e.g. cyclic
axioms

» Blocking

— Let Sub(x) be the subset of A that includes all class
asserstions about x

— Condition: Sub(y) < Sub(x) for some ancestor x
(blocking node) and predecessor y (blocked node)

— Intuitively, this means that the same constraints
have been dealt with before

Knowledge Graphs
Jeff Z. Pan 3
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Example: Blocking

+  Example:
— Given the ontology
1. Person C3friend.Person
— Check if Person is satisfiable
* Construct a tableau
2. Initialise the ABox A={x:Person}
3. Apply S-rule on 1, A={x:Person, x:3friend.Person}

4. Fply J-rule, A={x:Person, x:3friend.Person, (x,x1):friend,
Person}

5. Sub(x1) < Sub(x 2 so x1 is blocked and re rdplaced by x,
A={x:Person, x:3friend.Person, (x,x):frien

6. We can construct an interpretation as follows:
* Al={x
e Person' = {x}
o friend' = {<x,x>}

Knowledge Graphs
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Class Subsumption Checking

» Class satisfiability checking can be reduced to
class (un)satisfiability checking

— O|=CcDiff C n—=D is unsatisfiable

Knowledge Graphs
Jeff Z. Pan
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Example: Class Subsumption Checking

*  Check if the following subsumption holds
- AndrAnvrBCAN3IrB

1. To test the subsumption, we need to check the satisfiability of
theclass AN 3rAn vr.Bn —(An3rB)

TurnitintoNNF: An3arAnvrBn (AU Vr.—B)

Initial the ABox: A1={x: A n IrAn vrBn (AU Vr.-B)}
Apply n-rule: A2=A1 U {x:A, x: Ir.A, x: Vr.B,x: =AU Vr. - B}
Apply 3-rule: A3 = A2 U {<x,x1>:r, x1:A}

Apply V-rule: A4=A3 U {x1:B}

Apply U-rule: A5=A4 U {x: — A}, clash

Backtrack, A5'= A4 U {x: V r. - B}

. Apply V-rule: A6 = A5’ U {x1: — B}, clash, not backtractable

0.The test class description is unsatisfiable, so the subsumption
holds

3@ @ N o s e

Knowledge Graphs
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Class Instance Checking

* Reducing Class Instance Checking to Ontology
Consistency Checking

If O entails C(x), then in every interpretation | of O, we
have x!is in C!

It means O U {~C(x)}inconsistent

Knowledge Graphs
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Example

+ If an ontology O entails Male (nicolas)

— then in every interpretation | of O .
ry interp Male(nicolas)

— we have nicolas' € Male!

* Now if we extend O to O’ with a new axiom
— —Male(nicolas) (*)

* How to construct an interpretation I’ for O’?
— as all interpretations of O’ should satisfy O
— we could start from interpretations of O

* ltis easy to see that I’ does not exist
— If I’ does not satisfy O, then it does not satisfy O’ either
— If I satisfies O, then it does not satisfy -~Male(nicolas)

Knowledge Graphs
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» Question: given the following ontology O,
- OldLadyL V hasPet.Cat
— OldLady(Minnie

— hasPet(Minnie, Tom)

* Does O entail Tom: Cat?

1. Add Tom: — Cat into the ontology O

2. Initial the tableau: A={Minnie:OldLady, <Minnie,Tom>:hasPet,Tom: —
Cat}

3. Apply S-rule on axiom 1 with Minnie: A1=A U {Minnie: VhasPet.Cat}
4. Apply V-rule on Minnie: A2=A1 U {Tom:Cat} clash, not backtractable
5. Thus the extended ontology is inconsistent
6. And the entailment holds

Knowledge Graphs
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Example: Consistency Checking

T = {ﬁ(ALIB) Cl, AC-BnN3r.B, DCVr.A, BC '\AFIHT.A}

1. Rewrite the first axiominto TE AU B

Since any individual (such as x) is an instance of T, x must be an
instance of ALIB

3. Initialise the tableau: A1={x: ALIB}

4. Apply j-rule on x: A2=A1 U {x:A}

5. Apply S-rule on axiom2 with x: A3=A2 U {x: —B 3r.B}
6. Apply m-rule on x: A4=A3 U {x: —B, x: 3r.B}
7
8
9

N

Apply 3-rule on x: A5=A4 U {<x,x1>:r, x1:B}
Apply GCl-rule on axiom 1 with x1: A6=A5 U {x1: A LIB}
. Apply U-rule on x1: A7=A6 U {x1:B}
10. Apply S-rule on axiom 4 with x1: A8=A7 U {-A 3r.A}
11. Apply r-rule on x1: A9=A8 U {—A, 3r.A}
12. Apply 3-rule on x1: A10=A9 U {<x1,x2>:r, x2:A}
13. x2 is blocked by x

14. All axioms have been dealt with, and there is no contradiction, so
that the TBox is consistent

Knowledge Graphs
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Lecture Outline

* Motivation: Sound and complete reasoning in DL
* Introduction: Tableau algorithm
» Focus: The ALC DL

» Exercises (Mid-term Quiz next week)

— Check the consistency of the following knowledge graph:

Aez = {a: AN3s.F, (a,b):s,
a:Vs.(-F U-B), (a,c):,
b: B, c:CN3s.D}.
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