

Methods for Causal Inference Lecture 18: Additive Noise Models

Ava Khamseh

School of Informatics 2023-2024

Causal Discovery Methods (based on graphical models)

Class of Algorithm	Name	Assumptions	Short comings	Input
Constraint-based	PC (oldest)	Any distribution, No unobsv. confounders, Markov cond, faithfulness	Causal info only up to equivalence classes, Non bivariate	Complete undirected graph
	FCI	Any distribution, Asymptotically correct with confounders, Markov cond, faithfulness		
Score-based	GES	No unobsv. confounders	Non-bivariate	Empty graph, adds edges, removes some
Functional Causal Models (FCMs)	LinGAM/ ANM	Asymmetry in data	Requires additional assumptions (not general), harder for discrete data	Structural Equation Model

Constraint-based assumptions

Markov condition:

- Absent edge implies conditional independence (CI)
- Observing conditional dependence implies an edge
- Causal sufficiency: For any pair of variables X, Y, if there exists a
 variable Z which is a direct of cause of both X and Y, then Z is included
 in the causal graph (Z may be unobserved)

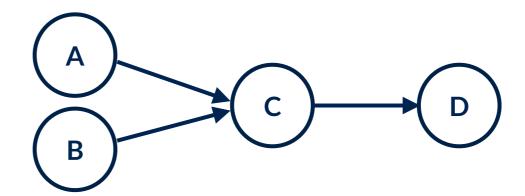
Faithfulness:

- Conjugate to the Markov condition
- Edge implies conditional dependence
- Observing CI implies absence of an edge

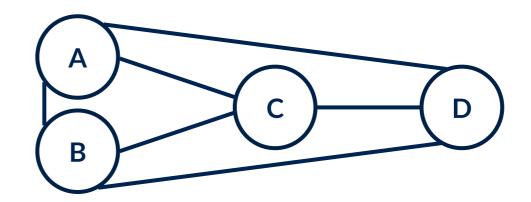
Could fail in regulatory systems, e.g., homeostasis.

Peter-Clark (PC) Algorithm

True causal graph:

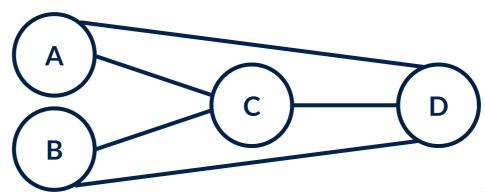


1. Start with the complete graph



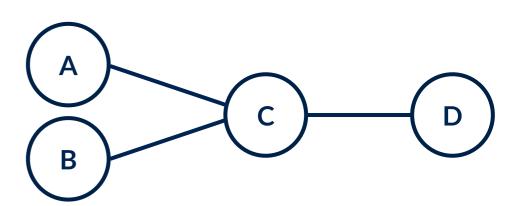
2. Zeroth order CI, $A \perp \!\!\! \perp B$, by faithfulness:

Need statistical independence testing.

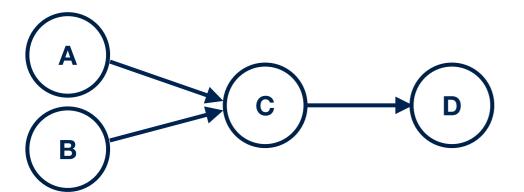


Peter-Clark (PC) Algorithm

3. 1st order CI, $A \perp\!\!\!\perp D|C$, by faithfulness: $B \perp\!\!\!\perp D|C$



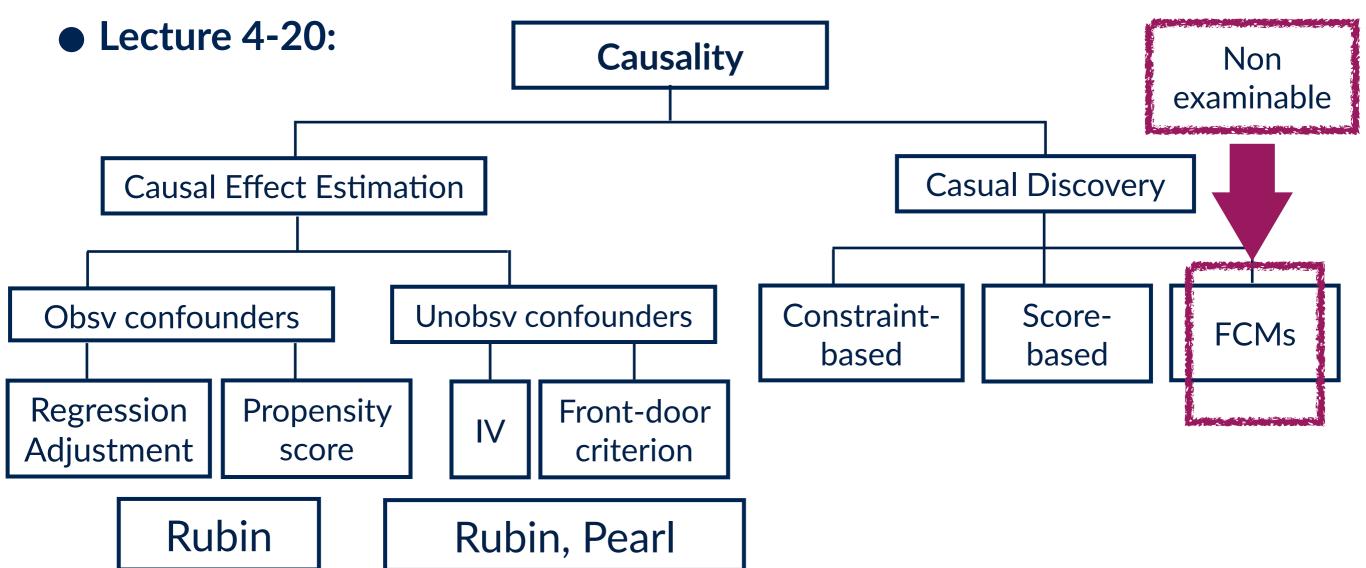
- 4. No higher order CI observed. Notice that conditioning sets only need to contain **neighbours** for the two nodes due to the Markov condition. We do not know the parents but parents are a subsets of neighbours. As the graph becomes sparser, the number of tests to be performed decreases. This makes PC very efficient.
- 5. Orient V-structures (colliders): take triplets where 2 nodes are connected to the 3rd: $A \not\perp\!\!\!\perp B|C$ only.



Note $C \leftarrow D$ cannot be as it would have been a collider (not detected in 5)

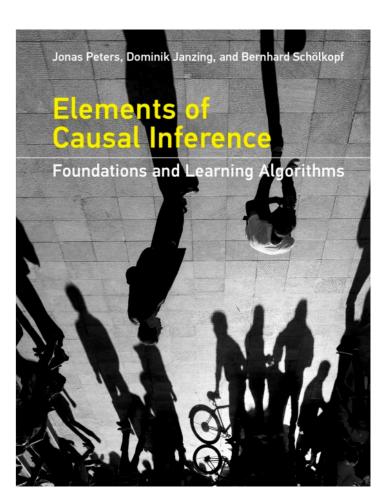
Overview of the course

- Lecture 1: Introduction & Motivation, why do we care about causality? Why deriving causality from observational data is non-trivial.
- Lecture 2: Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- Lecture 3: Recap of regression, multiple regression, graphs, SCM



FCMs/LiNGAMs/ANMs/IGCI

- Functional Causal Models (FCMs): Utilising asymmetry in data for causal discovery
- LiNGAMs: Linear non-gaussian acyclic models, allow for new approaches for causal learning from observational data
- ANM: Additive noise models and causal identifiablity
- IGCI: Information Geometric Causal Inference



Causal Structure Identifiability

- LiNGAMs: Linear non-gaussian acyclic models, allow for new approaches for causal learning from observational data.
- Focusing on 2 variables only, we wish to distinguish between:

$$x \to y \text{ or } y \to x$$

- from observational data.
- Assumption: The effect on E is a linear function of C up to additive noise:

$$E = \alpha C + N_E, N_E \perp \!\!\!\perp C$$

These assumptions are not enough to identify cause/effect.

i.e., non-identifiability of gaussian Cause and Effect. If:

$$Y = \alpha X + N_Y, \quad N_Y \perp \!\!\!\perp X$$

There exists a β and a random variable N_X s.t.:

$$X = \beta Y + N_X, \quad N_X \perp \!\!\!\perp Y$$

if and only if $(X, N_Y) \sim \mathcal{N}$ are gaussian.

i.e., it is sufficient that for X (Y) or N_Y (N_X) to be **non-gaussian** to render the causal direction identifiable.

Proof:

Theorem (Darmois-Skitvic): Let x_1, \dots, x_d be independent, non-degenerate random variable. If there exists non-vanishing coefficients a_1, \dots, a_d and b_1, \dots, b_d such that the two linear combinations:

$$l_1 = a_1 x_1 + \dots + a_d x_d$$

 $l_2 = b_1 x_1 + \dots + b_d x_d$

 $l_1 \perp \!\!\! \perp l_2$ are independent, then each x_i is normally distributed

Proof:

Theorem (Darmois-Skitvic): Let x_1, \dots, x_d be independent, non-degenerate random variable. If there exists non-vanishing coefficients a_1, \dots, a_d and b_1, \dots, b_d such that the two linear combinations:

$$l_1 = a_1 x_1 + \dots + a_d x_d$$

 $l_2 = b_1 x_1 + \dots + b_d x_d$

 $l_1 \perp \!\!\! \perp l_2$ are independent, then each x_i is normally distributed

Lemma (Peters 2008): Let $X \perp\!\!\!\perp N$. Then $N \not\perp\!\!\!\!\perp (X+N)$

Proof:

Theorem (Darmois-Skitvic): Let x_1, \dots, x_d be independent, non-degenerate random variable. If there exists non-vanishing coefficients a_1, \dots, a_d and b_1, \dots, b_d such that the two linear combinations:

$$l_1 = a_1 x_1 + \dots + a_d x_d$$

 $l_2 = b_1 x_1 + \dots + b_d x_d$

 $l_1 \perp \!\!\! \perp l_2$ are independent, then each x_i is normally distributed

- Lemma (Peters 2008): Let $X \perp \!\!\! \perp N$. Then $N \not \perp \!\!\! \perp (X+N)$
- We prove that $Y = \stackrel{N_Y \perp \!\!\! \perp X}{\alpha X + N_Y} \Rightarrow X = \beta Y + N_X, \quad N_X \perp \!\!\! \perp Y$ $\underline{\text{iff}} \ (X, N_Y) \sim \mathcal{N}$

Proof:

Proof:

③ We prove that if $(X, N_Y) \sim \mathcal{N}$ and $Y = \alpha X + N_Y, N_Y \perp \!\!\! \perp X$ $\Longrightarrow X = \beta Y + N_X, \quad N_X \perp \!\!\! \perp Y$

Define:

$$\beta := \frac{Cov[X, Y]}{Cov[Y, Y]} = \frac{\alpha Var[X]}{\alpha^2 Var[X] + Var[N_Y]}$$

$$X = \beta Y + N_X \Rightarrow N_X = X - \beta Y$$

Proof:

We prove that if $(X, N_Y) \sim \mathcal{N}$ and $Y = \alpha X + N_Y, N_Y \perp \!\!\! \perp X$ $\Longrightarrow X = \beta Y + N_X, \quad N_X \perp \!\!\! \perp Y$

Define:

$$\beta := \frac{Cov[X, Y]}{Cov[Y, Y]} = \frac{\alpha Var[X]}{\alpha^2 Var[X] + Var[N_Y]}$$

$$X = \beta Y + N_X \Rightarrow N_X = X - \beta Y$$

$$\begin{split} Cov[N_X,Y] = &Cov[X-\beta Y,Y] = Cov[X,Y] - \beta Cov[Y,Y] \\ = &Cov[X,Y] \left(1 - \beta \frac{Cov[Y,Y]}{Cov[X,Y]}\right) \\ = &Cov[X,Y] \left(1 - \beta_{\text{15}} \times \beta^{-1}\right) = 0 \end{split}$$

Proof:

Define:

$$\beta := \frac{Cov[X, Y]}{Cov[Y, Y]} = \frac{\alpha Var[X]}{\alpha^2 Var[X] + Var[N_Y]}$$

$$X = \beta Y + N_X \Rightarrow N_X = X - \beta Y$$

Then N_X, Y are uncorrelated by construction,

Proof:

① We prove that if $(X, N_Y) \sim \mathcal{N}$ and $Y = \alpha X + N_Y, N_Y \perp \!\!\! \perp X$ $\Longrightarrow X = \beta Y + N_X, \quad N_X \perp \!\!\! \perp Y$

Define:

$$\beta := \frac{Cov[X, Y]}{Cov[Y, Y]} = \frac{\alpha Var[X]}{\alpha^2 Var[X] + Var[N_Y]}$$

$$X = \beta Y + N_X \Rightarrow N_X = X - \beta Y$$

Then N_X, Y are uncorrelated by construction,

Moreover, Y is gaussian because $(X, N_Y) \sim \mathcal{N}$

Therefore, N_X is also gaussian.

Hence, N_X , Y are uncorrelated & gaussian, i.e., **independent**.

Proof:

$$(X, N_Y) \sim \mathcal{N}$$

Proof:

3 We prove the reverse: If
$$X = \alpha X + N_Y$$
, $N_Y \perp \!\!\!\perp X$ $\Rightarrow \beta Y + N_X$, $N_X \perp \!\!\!\perp Y$

Since $N_Y \parallel Y$ we have: $N_Y = X - \beta(\alpha X + N_Y) = (1 - \alpha\beta)X - \beta\beta$

$$(X,N_Y)\sim \mathcal{N}$$
 Since $N_X \perp\!\!\!\perp Y$, we have: $N_X=X-eta(\alpha X+N_Y)=(1-\alpha \beta)X-\beta N_Y$

Proof:

$$(X, N_Y) \sim \mathcal{N}$$

We prove the reverse: If
$$X = \alpha X + N_Y$$
, $X_Y \perp X \Rightarrow X = \beta Y + N_X$, $X_X \perp Y \Rightarrow X = \beta Y + N_X$, $X_X \perp Y \Rightarrow X = \beta Y + N_X$. Since $X_X \perp Y$, we have: $X_X = X - \beta(\alpha X + N_Y) = (1 - \alpha \beta)X - \beta N_Y$

There are 3 cases:

(i)
$$(1 - \alpha \beta) \neq 0 \& \beta \neq 0$$

Then, given $N_X \perp\!\!\!\perp Y$, DS theorem implies $X, N_Y \sim \mathcal{N}$

Proof:

We prove the reverse: If $(X, N_Y) \sim \mathcal{N}$

$$Y = \alpha X + N_Y, \quad N_Y \perp \!\!\!\perp X$$

$$X = \beta Y + N_X, \quad N_X \perp \!\!\!\perp Y$$

Since $N_X \perp \!\!\! \perp Y$, we have: $N_X = X - \beta(\alpha X + N_Y) = (1 - \alpha\beta)X - \beta N_Y$

There are 3 cases:

- (i) $(1-\alpha\beta)\neq 0\ \&\ \beta\neq 0$ Then, given $N_X\perp\!\!\!\perp Y$, DS theorem implies $X,N_Y\sim \mathcal{N}$
- (ii) $(1-\alpha\beta)\neq 0\ \&\ \beta=0$ Then, since $N_X\perp\!\!\!\perp Y$, and $N_X=X$, then $X\perp\!\!\!\perp \alpha X+N_Y$ in contradiction with Peters' lemma

Proof:

We prove the reverse: If $(X, N_Y) \sim \mathcal{N}$

$$Y = \alpha X + N_Y, \quad N_Y \perp \!\!\!\perp X$$

$$X = \beta Y + N_X, \quad N_X \perp \!\!\!\perp Y$$

Since $N_X \perp \!\!\! \perp Y$, we have: $N_X = X - \beta(\alpha X + N_Y) = (1 - \alpha\beta)X - \beta N_Y$

There are 3 cases:

(iii)
$$1 - \alpha \beta = 0 \& \beta \neq 0$$

Then, since $N_X \perp\!\!\!\perp Y$, and $N_X = -\beta N_Y$, $N_Y \perp\!\!\!\perp \alpha X + N_Y$ again in contradiction with Peters' lemma

Proof:

We prove the reverse: If $(X, N_Y) \sim \mathcal{N}$

$$Y = \alpha X + N_Y, \quad N_Y \perp \!\!\!\perp X$$

$$X = \beta Y + N_X, \quad N_X \perp \!\!\!\perp Y$$

Since
$$N_X \perp \!\!\!\perp Y$$
, we have: $N_X = X - \beta(\alpha X + N_Y) = (1 - \alpha\beta)X - \beta N_Y$

There are 3 cases:

(iii)
$$1 - \alpha \beta = 0 \& \beta \neq 0$$

Then, since $N_X \perp\!\!\!\perp Y$, and $N_X = -\beta N_Y$, $N_Y \perp\!\!\!\perp \alpha X + N_Y$ again in contradiction with Peters' lemma

Therefore, as long as one of X, N_Y, Y, N_X is not gaussian, the causal direction is **identifiable** from **observational data**!

Linear Additive Noise Models (ANMs)

ANM: The joint distribution $P_{X,Y}$ is said to admit an ANM for $X \to Y$ if there exists a measurable function f_Y and a noise variable N_Y s.t.

$$Y = f_Y(X) + N_Y, N_Y \perp \!\!\!\perp X$$

For this model, using convolution of probabilities we have:

$$p(x,y) = p_{N_Y}(y - f_Y(x))p_X(x)$$

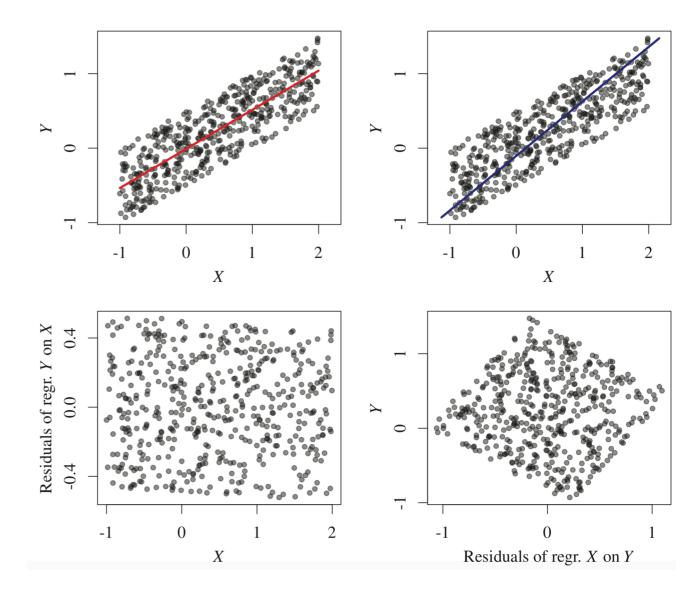
Similarly, if a backward model exists:

$$p(x,y) = p_{N_X}(x - f_X(y))p_Y(y)$$

It turns out: This imposes very strong conditions on $log(p_X)$ for which $p_{X,Y}$ admits a smooth ANM from Y to X (backward model).

In practice

- 1. Regress Y on X
- 2. **Test** whether $Y \hat{f}_Y$ is independent of X
- 3. Repeat, swapping X and Y
- 4. If the independence is accepted for one direction and rejected for the other, infer the former as the causal direction,



Statistical Test of Independence: Choose one that accounts for higher order statistic rather than testing correlations only, e.g. HSIC

In practice

```
library(dHSIC)
    library(mgcv)
3
    # generate data set
4
    set.seed(1)
   X <- rnorm(200)
    Y \leftarrow X^3 + rnorm(200)
7
8
    # fit models
9
    modelforw <- gam(Y ~ s(X))</pre>
10
    modelbackw <- gam(X ~ s(Y))</pre>
11
12
    # independence tests
13
    dhsic.test(modelforw$residuals, X)$p.value
14
    # [1] 0.7628932
15
    dhsic.test(modelbackw$residuals, Y)$p.value
16
    # [1] 0.004221031
17
18
    # computing likelihoods
19
    - log(var(X)) - log(var(modelforw$residuals))
20
    # [1] 0.1420063
21
    - log(var(modelbackw$residuals)) - log(var(Y))
22
    # [1] -1.014013
23
```


Methods for Causal Inference Lecture 18: Additive Noise Models

Ava Khamseh

School of Informatics 2023-2024