Methods for Causal Inference
Lecture 6: Instrumental variable method

Ava Khamseh
School of Informatics
2023-2024
So far ...

Causal inference with observed confounders
Overview of the course

- **Lecture 1**: Introduction & Motivation, why do we care about causality? Why deriving causality from observational data is non-trivial.
- **Lecture 2**: Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes’ rule
- **Lecture 3**: Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**

![Diagram of causality concepts]

- Causal Effect Estimation
 - Obsv confounders
 - Regression Adjustment
 - Propensity score
 - Unobsv confounders
 - IV
 - Front-door criterion
- Casual Discovery
 - Constraint-based
 - Score-based
 - FCMs
Randomised Controlled Trials (RCTs)

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to ‘gold standard’ of scientific research, used in biological, medical and behavioural sciences
Randomised Controlled Trials (RCTs)

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to ‘gold standard’ of scientific research, used in biological, medical and behavioural sciences

But RCT’s can be impossible, imperfect or unethical:
- Can be very costly and difficult to organise (demanding resources)
Randomised Control Trials (RCTs)

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to ‘gold standard’ of scientific research, used in biological, medical and behavioural sciences

But RCT's can be impossible, imperfect or unethical:
- Can be very costly and difficult to organise (demanding resources)
- Perfect control is hard to achieve (imperfect compliance): Adverse reaction to an experimental drug means dose has to be reduce no avoid harm
Randomised Controlled Trials (RCTs)

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to ‘gold standard’ of scientific research, used in biological, medical and behavioural sciences

But RCT’s can be impossible, imperfect or unethical:
- Can be very costly and difficult to organise (demanding resources)
- Perfect control is hard to achieve (imperfect compliance): Adverse reaction to an experimental drug means dose has to be reduce no avoid harm
- Unethical: Asking pregnant women to smoke to observe child birth weight Denying the control subjects a drug, e.g. treatment could have been potentially life saving for cancer patients
Randomised Controlled Trials (RCTs)

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to ‘gold standard’ of scientific research, used in biological, medical and behavioural sciences

But RCT’s can be impossible, imperfect or unethical:
- Can be very costly and difficult to organise (demanding resources)
- Perfect control is hard to achieve (imperfect compliance): Adverse reaction to an experimental drug means dose has to be reduce no avoid harm
- Unethical: Asking pregnant women to smoke to observe child birth weight Denying the control subjects a drug, e.g. treatment could have been potentially life saving for cancer patients
- Randomisation may influence participation and behaviour
Randomising an instrument

Causal inference from studies in which subject have a final choice

Randomisation is confined to an indirect instrument that encourages or discourage participation in treatment or control programmes.

(However, imperfect compliance poses a problem, e.g., subjects that declined taking the drug are precisely those who would have responded adversely. So experiment might conclude the drug is more effective than it actually is. -> more complex methods, e.g. bounds)
Instrumental Variable

Unobserved confounders (U), **violates unconfoundedness**, i.e. conditioning on X alone, would not result in a randomised treatment assignment.

Unconfoundedness is fundamentally unverifiable.

Rubin 1996
Naive regression leads to bias

\[
Y = \tau T + \delta_U U \\
T = \gamma_U U
\]
Naive regression leads to bias

What happens if we naively perform a linear regression of Y on T:

$$Y = \tau T + \delta_U U$$

$$T = \gamma_U U$$

$$\frac{\text{Cov}[T, Y]}{\text{Var}[T]} = \frac{\tau \text{Var}[T] + \gamma_U \delta_U \text{Var}[U]}{\text{Var}[T]} = \tau + \frac{\gamma_U \delta_U \text{Var}[U]}{\text{Var}[T]} = \tau + \frac{\delta_U}{\gamma_U}$$

- causal term
- Bias term
Instrumental Variable example

- **Example 1:**
 - T: smoking during pregnancy
 - Y: birthweight
 - X: parity, mother’s age, weight, ...
 - U: Other unmeasured confounders

- Randomise Z (intention-to-treat): either receive encouragement to stop smoking (Z=1), or receive usual care (Z=0)
- Intention-to-treat analysis gives causal effect estimator of encouragement z on outcome y:
 \[
 \mathbb{E}(y|z = 1) - \mathbb{E}(y|z = 0)
 \]

- What can we say about the causal effect of smoking itself?
Instrumental Variable assumptions

- **SUTVA:** Potential outcomes for each individual i are unrelated to the treatment status of other individuals:
 \[
 Y^{(i)}(Z, T) = Y^{(i)}(Z^{(i)}, T^{(i)}) \quad |Z| = |T| = N \text{ individuals}
 \]

- Non-zero average/relevant: Treatment assignment Z associated with the treatment
 \[
 \mathbb{E} \left[\left(T^{(i)} | z = 1 \right) - \left(T^{(i)} | z = 0 \right) \right]
 \]

- Treatment assignment Z is random (Z and Y do not share a cause).
Instrumental Variable assumptions

- **SUTVA**: Potential outcomes for each individual \(i \) are unrelated to the treatment status of other individuals:

\[
Y^{(i)}(Z, T) = Y^{(i)}(Z^{(i)}, T^{(i)}) , \quad |Z| = |T| = N \text{ individuals}
\]

- Non-zero average/relevant: Treatment assignment \(Z \) associated with the treatment

\[
\mathbb{E}\left[\left(T^{(i)}|z = 1\right) - \left(T^{(i)}|z = 0\right)\right]
\]

- Treatment assignment \(Z \) is random (\(Z \) and \(Y \) do not share a cause).

\[
\left(Y^{(i)}|z = 1, t\right) = \left(Y^{(i)}|z = 0, t\right)
\]

- **Exclusion Restriction**: Any effect of \(Z \) on \(Y \) is via an effect of \(Z \) on \(T \), i.e., \(Z \) should not affect \(Y \) when \(T \) is held constant

- **Monotonicity** (increasing encouragement “dose” increases probability of treatment, no defiers):

\[
\left(T^{(i)}|z = 1\right) \geq \left(T^{(i)}|z = 0\right)
\]

Rubin 1996
Instrumental Variable: Potential values of T

Population	T	z=0	T	z=1	Description	
Never-takers	0	0		Causal effect of Z on T is zero, since		
				\((T^{(i)}	z = 1) - (T^{(i)}	z = 0) = 0\)
Compliers	0	1		Causal effect inference: \((Y^{(i)}	T^{(i)} = 1) - (Y^{(i)}	T^{(i)} = 0)\)
				Rule out by **monotonicity**, since		
				\((T^{(i)}	z = 1) - (T^{(i)}	z = 0) = -1\)
Defiers	1	0		Causal effect of Z on Y is zero, since		
				\((T^{(i)}	z = 1) - (T^{(i)}	z = 0) = 0\)

Notation: $T=1$ is **not** smoking

(Rubin 1996)
Instrumental Variable: The estimand

Want ATE:

\[\mathbb{E}[Y_{T=1} - Y_{T=0}] \]

“Almost”

Will estimate:

\[\tau = \frac{\mathbb{E}[(Y|z=1) - (Y|z=0)]}{\mathbb{E}[(T|z=1) - (T|z=0)]} \]

Rubin 1996
Instrumental Variable: The estimand

Want ATE: \[\mathbb{E} \left[\left(Y(i) \middle| t(i) = 1 \right) - \left(Y(i) \middle| t(i) = 0 \right) \right] \]

\[\tau = \frac{\mathbb{E} [(Y \middle| z = 1) - (Y \middle| z = 0)]}{\mathbb{E} [(T \middle| z = 1) - (T \middle| z = 0)]} \]

Derivation:

\[\left(Y(i) \middle| T(i) (z = 1) \right) - \left(Y(i) \middle| T(i) (z = 0) \right) = \left(Y(i) \left(t(i) = 1 \right) \cdot (t(i) \middle| z = 1) + Y(i) \left(t(i) = 0 \right) \cdot (1 - (t(i) \middle| z = 1)) \right) \]

\[- \left[Y(i) \left(t(i) = 1 \right) \cdot (t(i) \middle| z = 0) + Y(i) \left(t(i) = 0 \right) \cdot (1 - (t(i) \middle| z = 0)) \right] \]

\[= \left(Y(i) \left(t(i) = 1 \right) - Y(i) \left(t(i) = 0 \right) \right) \cdot \left((t(i) \middle| z = 1) - (t(i) \middle| z = 0) \right) \]

Hence, the causal effect of Z on Y for individual i, is the product of the causal effect of Z on T, and, the casual effect of T on Y.
Instrumental Variable: The estimand

Want ATE: \[\mathbb{E} \left[\left(Y^{(i)} | t^{(i)} = 1 \right) - \left(Y^{(i)} | t^{(i)} = 0 \right) \right] \]

Derivation:
\[
\tau = \frac{\mathbb{E} \left[(Y | z = 1) - (Y | z = 0) \right]}{\mathbb{E} \left[(T | z = 1) - (T | z = 0) \right]}
\]

\[
\begin{align*}
&\left(Y^{(i)} | T^{(i)}(z = 1) \right) - \left(Y^{(i)} | T^{(i)}(z = 0) \right) \\
&= \left[Y^{(i)} \left(t^{(i)} = 1 \right) \cdot \left(t^{(i)} | z = 1 \right) + Y^{(i)} \left(t^{(i)} = 0 \right) \cdot \left(1 - \left(t^{(i)} | z = 1 \right) \right) \right] \\
&\quad - \left[Y^{(i)} \left(t^{(i)} = 1 \right) \cdot \left(t^{(i)} | z = 0 \right) + Y^{(i)} \left(t^{(i)} = 0 \right) \cdot \left(1 - \left(t^{(i)} | z = 0 \right) \right) \right] \\
&= \left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \cdot \left(\left(t^{(i)} | z = 1 \right) - \left(t^{(i)} | z = 0 \right) \right)
\end{align*}
\]

Hence, the causal effect of \(Z \) on \(Y \) for individual \(i \), is the product of the causal effect of \(Z \) on \(T \), and, the causal effect of \(T \) on \(Y \).
Instrumental Variable: The estimand

Want ATE: \[\mathbb{E} \left[\left(Y^{(i)}|t^{(i)} = 1\right) - \left(Y^{(i)}|t^{(i)} = 0\right) \right] \]

\[\tau = \frac{\mathbb{E} \left[(Y|z = 1) - (Y|z = 0) \right]}{\mathbb{E} \left[(T|z = 1) - (T|z = 0) \right]} \]

Derivation:

\[\left(Y^{(i)}|T^{(i)}(z = 1) \right) - \left(Y^{(i)}|T^{(i)}(z = 0) \right) \]

\[= \left[Y^{(i)} \left(t^{(i)} = 1 \right) \cdot \left(t^{(i)}|z = 1 \right) + Y^{(i)} \left(t^{(i)} = 0 \right) \cdot \left(1 - \left(t^{(i)}|z = 1 \right) \right) \right] \]

\[- \left[Y^{(i)} \left(t^{(i)} = 1 \right) \cdot \left(t^{(i)}|z = 0 \right) + Y^{(i)} \left(t^{(i)} = 0 \right) \cdot \left(1 - \left(t^{(i)}|z = 0 \right) \right) \right] \]

\[= \left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \cdot \left(\left(t^{(i)}|z = 1 \right) - \left(t^{(i)}|z = 0 \right) \right) \]

Hence, the causal effect of Z on Y for individual i, is the product of the causal effect of Z on T, and, the causal effect of T on Y.

Rubin 1996
Instrumental Variable: The estimand

To continue the derivation, we use the fact that:

\[
E[XY] = \int \int xy \, p(x, y) \, dx \, dy = \int dy \, y \, p(y) \int dx \, x \, p(x|y) = \int dy \, y \, p(y)E[x|y]
\]

and write,

\[
E \left[\left(Y^{(i)} | T^{(i)}(z = 1) \right) - \left(Y^{(i)} | T^{(i)}(z = 0) \right) \right] = E \left[\left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \cdot \left(\left(t^{(i)} \right| z = 1 \right) - \left(t^{(i)} \right| z = 0 \right) \right]
\]
Instrumental Variable: The estimand

To continue the derivation, we use the fact that:

\[E[XY] = \int \int x y p(x, y) dx dy = \int dy y p(y) \int dx x p(x|y) = \int dy y p(y) E[x|y] \]

and write,

\[E \left[\left(Y^{(i)}|T^{(i)}(z = 1) \right) - \left(Y^{(i)}|T^{(i)}(z = 0) \right) \right] \]

\[= E \left[\left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \cdot \left(\left(t^{(i)}|z = 1 \right) - \left(t^{(i)}|z = 0 \right) \right) \right] \]

\[= E \left[\left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \right] \cdot \left(\left(t^{(i)}|z = 1 \right) - \left(t^{(i)}|z = 0 \right) \right) = 1 \cdot \]

\[P \left(\left(t^{(i)}|z = 1 \right) - \left(t^{(i)}|z = 0 \right) = 1 \right) \]

\[-E \left[\left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \right] \cdot \left(\left(t^{(i)}|z = 1 \right) - \left(t^{(i)}|z = 0 \right) \right) = -1 \cdot \]

\[P \left(\left(t^{(i)}|z = 1 \right) - \left(t^{(i)}|z = 0 \right) = -1 \right) \]

0, by monotonicity
Instrumental Variable: The estimand

\[
\frac{\mathbb{E} \left[(Y^{(i)}|T^{(i)}(z = 1)) - (Y^{(i)}|T^{(i)}(z = 0)) \right]}{\mathbb{E} \left[(t^{(i)}|z = 1) - (t^{(i)}|z = 0) \right]} = \mathbb{E} \left[\left(Y^{(i)}(t^{(i)} = 1) - Y^{(i)}(t^{(i)} = 0) \right) \mid \left((t^{(i)}|z = 1) - (t^{(i)}|z = 0) \right) \right] = 1
\]

i.e. restricting to **compliers**, the average causal effect of Z on Y is proportional to the average causal effect of T on Y.

\[
\tau = \frac{\mathbb{E} \left[(Y|z = 1) - (Y|z = 0) \right]}{\mathbb{E} \left[(T|z = 1) - (T|z = 0) \right]}
\]

- In this example, Z was randomly assigned as part of the study
- IV can also be randomised in nature (nature randomiser):
 - Mendelian randomisation
Instrumental Variable: Mendelian Randomisation

Population genetics:
Z = a DNA variant associated with a particular exposure T
T = exposure, e.g. lipid levels in the blood
Y = heart disease
X = population stratification (might affect Z, need to adjust)
U = unobserved variables affecting both lipid levels and disease

Conditional instrument
Instrumental Variable: Economics

How does price of a product casually affect demand?

\[Z = \text{Market supply} \]
\[T = \text{Price} \]
\[Y = \text{Demand} \]
\[U = \text{Factors confounding influencing price and demand} \]
\[(\text{e.g. tax imposed}) \]

Exclusion restriction requires that market supply does not affect demand
\[(\text{e.g. COVID-19 toilet paper fiasco!}) \]
\[(\text{e.g. Pokemon cards}) \]
Also, individuals may not be independent anymore
The Wald Estimator (for binary variables)

\[
\tau = \frac{\mathbb{E}[(Y|z = 1) - (Y|z = 0)]}{\mathbb{E}[(T|z = 1) - (T|z = 0)]}
\]

\[
\hat{\tau} = \frac{1}{n_{z=1}} \sum_{i \in z=1} Y(i) - \frac{1}{n_{z=0}} \sum_{i \in z=0} Y(i) \\
\frac{1}{n_{z=1}} \sum_{i \in z=1} T(i) - \frac{1}{n_{z=0}} \sum_{i \in z=0} T(i)
\]
IV Estimator: continuous variables case

Linear case:

\[\tau = \frac{\text{Cov}(Y, Z)}{\text{Cov}(T, Z)} \]

\[\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)} \]

Two-Stage Least-squares Estimator
IV Estimator: continuous variables case

Linear case:

\[\tau = \frac{\text{Cov}(Y, Z)}{\text{Cov}(T, Z)} \]

\[\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)} \]

Two-Stage Least-squares Estimator
IV Estimator: continuous variables case

\[\text{Cov}(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] \]

\[\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)} \]

\[Y = \tau T + \delta U U \]
IV Estimator: continuous variables case

\[\text{Cov}(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y] \mathbb{E}[Z] \]
\[= \mathbb{E}(\tau T + \delta_u U) Z] - \mathbb{E}[\tau T + \delta_u U] \mathbb{E}[Z] \]

By linearity and exclusion restriction

\[\hat{\tau} = \frac{\text{Cov}(Y, Z)}{\text{Cov}(T, Z)} \]

\[Y = \tau T + \delta_U U \]
IV Estimator: continuous variables case

\[\text{Cov}(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] \]

\[= \mathbb{E}(\tau T + \delta_u U)Z] - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z] \]

\[= \tau \mathbb{E}[TZ] + \delta_u \mathbb{E}[UZ] - \tau \mathbb{E}[T]\mathbb{E}[Z] - \delta_u \mathbb{E}[U]\mathbb{E}[Z] \]

\[\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)} \]

\[Y = \tau T + \delta_U U \]
IV Estimator: continuous variables case

\[\text{Cov}(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] \]

\[= \mathbb{E}(\tau T + \delta_u U)Z - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z] \]

\[= \tau \mathbb{E}[TZ] + \delta_u \mathbb{E}[UZ] - \tau \mathbb{E}[T]\mathbb{E}[Z] - \delta_u \mathbb{E}[U]\mathbb{E}[Z] \]

\[= \tau \text{Cov}(T, Z) + \delta_U \text{Cov}(U, Z) \]

\[\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)} \]

\[Y = \tau T + \delta_U U \]
IV Estimator: continuous variables case

\[\text{Cov}(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] \]

\[= \mathbb{E}(\tau T + \delta_u U)Z] - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z] \]

\[= \tau \mathbb{E}[TZ] + \delta_u \mathbb{E}[UZ] - \tau \mathbb{E}[T]\mathbb{E}[Z] - \delta_u \mathbb{E}[U]\mathbb{E}[Z] \]

\[= \tau \text{Cov}(T, Z) + \delta_u \text{Cov}(U, Z) \quad \text{Instrument is not} \]

\[= \tau \text{Cov}(T, Z) \quad \text{confounded by } U \]

\[\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)} \]

\[Y = \tau T + \delta_U U \]
IV Estimator: continuous variables case

Two-Stage Least Squares Estimator (linear regression):

1. Estimate $\mathbb{E}[T|Z]$, to obtain \hat{T} in subspace

2. Estimate $\mathbb{E}[Y|\hat{T}]$, to obtain $\hat{\tau}$, which is the fitted coefficient in front of \hat{T} in this regression.
IV Estimator: continuous variables case

Two-Stage Least Squares Estimator (linear regression):

1. Estimate $\mathbb{E}[T|Z]$, to obtain \hat{T} in subspace

2. Estimate $\mathbb{E}[Y|\hat{T}]$, to obtain $\hat{\tau}$, which is the fitted coefficient in front of \hat{T} in this regression.
Other remarks

Double-blind studies:
To ensure exclusion restriction, investigators withhold knowledge of the assigned treatment Z from participants and doctors

Example: Those randomly assigned $z=1$, receive aspirin, but those assigned $z=0$ receive placebo, do not. The pills look identical. Neither doctor nor patient knows which is which, “double-blind placebo-controlled” randomised experiment.

Often no feasible, e.g. heart surgery, has no convincing placebo!
Overview of the course

- **Lecture 1:** Introduction & Motivation, why do we care about causality? Why deriving causality from observational data is non-trivial.
- **Lecture 2:** Recap of probability theory, variables, events, conditional probabilities, independence, law of total probability, Bayes’ rule
- **Lecture 3:** Recap of regression, multiple regression, graphs, SCM
- **Lecture 4-20:**

Causality

- Causal Effect Estimation
 - Obsv confounders
 - Regression adjustment
 - Propensity score
 - Rubin
- Unobsv confounders
 - IV
 - Front-door criterion
 - Rubin, Pearl
- Casual Discovery
 - Constraint-based
 - Score-based
 - FCMs
Methods for Causal Inference
Lecture 6: Instrumental variable method

Ava Khamseh
School of Informatics
2023-2024