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So far...

Causal inference with observed confounders
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Randomised Control Trials (RCT): Subjects are assigned at random to various
groups (treatment or control)

RCTs are sometimes referred to ‘gold standard’ of scientific research, used in
biological, medical and behavioural sciences

But RCT’s can be impossible, imperfect or unethical:

- Can be very costly and difficult to organise (demanding resources)

- Perfect control is hard to achieve (imperfect compliance): Adverse
reaction to an experimental drug means dose has to be reduce no avoid
harm

- Unethical: Asking pregnant women to smoke to observe child birth weight
Denying the control subjects a drug, e.g. treatment could have been
potentially life saving for cancer patients

- Randomisation may influence participation and behaviour
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Randomising an instrument

Causal inference from studies in which subject have a final choice

Randomisation is confined to an indirect instrument that encourages or
discourage participation in treatment or control programmes.

(However, imperfect compliance poses a problem, e.g., subjects that declined
taking the drug are precisely those who would have responded adversely. So
experiment might conclude the drug is more effective than it actually is.

-> more complex methods, e.g. bounds)



Instrumental Variable

Unobserved confounders (U), violates unconfoundedness, i.e. conditioning
on X alone, would not results in a randomised treatment assignment

Unconfoundedness is fundamentally unverifiable
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Naive regression leads to bias
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Naive regression leads to bias

S .
.
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.

What happens if we naively perform a
linear regression of Y on T: Y =77 + 65U

Cov|[T,Y] 7VarT|+yyoyVarlU] .

Var|T| Var|T]

causal term Bias term
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Instrumental Variable example

® Example 1:

- T: smoking during pregnancy

- Y: birthweight @ """

- X: parity, mother’s age, weight, ...

- U: Other unmeasured confounders

@ Randomise Z (intention-to-treat): either receive encouragement to stop
smoking (Z=1), or receive usual care (Z=0)

® Intention-to-treat analysis gives causal effect estimator of encouragement
Z on outcomey:

3(y|z = 1) — E(y|z = 0)

® What can we say about the causal effect of smoking itself?

13



Instrumental Variable assumptions

® SUTVA: Potential outcomes for each individual i are unrelated to the
treatment status of other individuals:

YO(Z,T) =YD Z® 17O |Z| = |T| = N individuals

® Non-zero average/relevant: Treatment assignment Z associated with the
treatment E {(T(“\z = 1) - (T(i)\z = O)}
® Treatment assignment Z is random (Z and Y do not share a cause).
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Instrumental Variable assumptions

® SUTVA: Potential outcomes for each individual i are unrelated to the
treatment status of other individuals:

YO(Z,T) =YD Z® 17O |Z| = |T| = N individuals

® Non-zero average/relevant: Treatment assignment Z associated with the
treatment E {(T(“\z = 1) - (T(i)\z = O)}
® Treatment assignment Z is random (Z and Y do not share a cause).

(Y“)yz = 1,t) = (Y“)yz = O,t)

® Exclusion Restriction: Any effect of Zon Y is via an effectof Zon T, i.e.,
Z should not affect Y when T is held constant

® Monotonicity (increasing encouragement “dose”
increases probability of treatment, no defiers):

(T@')\z - 1) > (T@)yz - o)
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Instrumental Variable: Potential values of T

Population | T|z=0 T|z=1 Description
Causal effect of Z on T is zero, since
Never-takers 0] 0] | |
(T@\z = 1) _ (T<’L>|z - 0) )
(T(i)\z — 1) _ (T(i)|z — 0) —
Compliers 0] 1 - -
causal effect inference: (Y(’)\T(Z) = 1) — (Y(Z)!T(Z) = 0)
Rule out by monotonicity, since
Defiers 1 0]
(T@)\z - 1) _ (T<Z’>|z - 0) — 1
Causal effect of Z on Y is zero, since
Always-takers 1 1
(T<i>|z — 1) _ (T<i>|z - 0) ~0
Notation: T=1 is not smoking




Instrumental Variable: The estimand

Want ATE:

Will estimate: T =
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Instrumental Variable: The estimand

WantATE: E [(Y“)\t(i) - 1) _ (Y (D)) — 0)}

2[(Y]z= 1) — (V]2 = 0)
(T2 = 1) — (T]z = 0)

Derivation:

(y( NT@ (5 = 1) ) YO |70 (5 = 0) ) tis either t=0 or t=1, and exclusion restriction

[Y()(t()—1> s |z—1)+Y<>(t<>—o) (1—(75(@')],2:1)):
_[yu)(t():l).(tm‘zzo) y()(tozo).(1_(?5@)‘2:0)):
(y()(() 1) y()(tm_o)).((tw‘zzl)_(t(i),z:o))

Hence, the causal effect of Z on Y for individual i, is the product of

the causal effect of Z on T, and, the casual effect of Ton'Y.
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Instrumental Variable: The estimand
To continue the derivation, we use the fact that:
EL0Y) = [ [ oy p(ey)dady = [ dyyply) [ do o plaly) = [ dyy o)l
and write,

E|(YOIrQe:=1) - (YO ro:=0))] .01,

“E[(vO (80 = 1) =y (10 = 0)) - ((19]z = 1) - (19]z = 0))]
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Instrumental Variable: The estimand
To continue the derivation, we use the fact that:
EL0Y) = [ [ oy p(ey)dady = [ dyyply) [ do o plaly) = [ dyy o)l
and write,

E|(YOIr0=1)) - (vO170(2 = 0))] .+ 01,-1

R '(y(i) (tu) _ 1) _y @ (t@:) _ 0)) . ( i
R '(y(z‘) (tu) _ 1) _ (@) (t@:) _ 0)) | '

P ((#9]z = Te=0) = -1)

O, by monotonicity
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Instrumental Variable: The estimand

E [(YO[T0(z = 1)) = (YOITO(z = 0)]
E[(tD|z=1) — (t®]z =0)]

B[ (= 1) v () [((€ 1) - (1= 0) - ]

l.e. restricting to|compliers, the average causal effect of Zon Y is

proportional to the average causal effect of T on Y.

2[(Y]z = 1) — (V]2 = 0)
2[(T]z = 1) — (T]z = 0)

® |In this example, Z was randomly assigned as part of the study

® |V can also be randomised in nature (nature randomiser):
- Mendelian randomisation
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Instrumental Variable: Mendelian Randomisation

Population genetics:

Z = a DNA variant associated with a particular exposure T

T = exposure, e.g. lipid levels in the blood

Y = heart disease

X = population stratification (might affect Z, need to adjust)

U = unobserved variables affecting both lipid levels and disease

Conditional instrument




Instrumental Variable: Economics

How does price of a product casually affect demand?

Z = Market supply

T = Price

Y = Demand

U = Factors confounding influencing price and demand

(e.g. tax imposed)

Exclusion restriction requires that market supply

does not affect demand
(e.g. COVID-19 toilet paper fiasco! ) <
(e.g. Pokemon cards) ., R/

Also, individuals may not be independent anymore @
25



The Wald Estimator (for binary variables)

nzlzl Ziezzl Y(Z) : ZiEz:O Y(Z)

N==0
1

T D ica=1 T : D ic =0 T

N>=0

>
|
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IV Estimator: continuous variables case

o

Cov(

Y,

Z)

B Cov/(

I,

Z)

Linear case:
. Cov(Y, 2)

T = —
Cov(T, Z)

4
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IV Estimator: continuous variables case

Cov(Y, Z)

Linear case: —
| "= Cov(T, 2)

b

Two-Stage Least-squares
Estimator
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IV Estimator: continuous variables case

Cov(Y, Z) =

=

iy Z] — E[Y]E[Z]
. Cov(Y,2)
" Oov(T, 2)
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IV Estimator: continuous variables case

Cov(Y, Z)

=

(T + 0,U) 2] —
. Cov(Y, 2)
T = —

Cov(T, Z)

1Y 7] — E[Y|E[Z]

T 4 6,U]
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IV Estimator: continuous variables case

Cov(Y, Z)

=

=E[YZ] -E[Y|E|Z]
=E(rT + 0, U)Z| — E|7T -
=7E|[TZ] + 6, EUZ] — 7

. Cov(Y,2)

" Oov(T, 2)
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IV Estimator: continuous variables case

Cov(Y, Z) = E[Y Z] — E[Y|E[Z]
= E(+T + 6,U)Z] — E[rT + §,U|E[Z]
= rE[T'Z] + 6,E[UZ] — rE[T]E[Z] — §,E
— 7Cov(T, Z) + 6y Cov(U, Z)

Cov(Y, Z)
Cov(T, Z)

=
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IV Estimator: continuous variables case

Cov(Y, Z)

=

=E(T +6,U)Z| —

1Y Z] — E[Y]E[Z]

[T + 6,U|E[Z]

= TE[T'Z] + 6,E[UZ] — 7E[T|E[Z] - 6,E[U]E[Z]

= 7Cov(T, Z)
. Cov(Y,2)
T = —
Cov(T, Z)

TCOV(Ta Z) =+ 5UCOV(U7 Z) Instrument is not

confounded by U
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IV Estimator: continuous variables case

Two-Stage Least Squares Estimator (linear regression):

1. Estimate

2. Estimate

% T'| Z], to obtain T in subspace

41[Y\T], to obtain 7, which is the fitted

coefficient in front of 1" in this regression.
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Other remarks

Double-blind studies:
To ensure exclusion restriction, investigators withhold knowledge of the
assigned treatment Z from participants and doctors

Example: Those randomly assigned z=1, receive aspirin, but those
assigned z=0 receive placebo, do not. The pills look identical. Neither
doctor nor patient knowns which is which, “double-blind placebo-

controlled” randomised experiment.

Often no feasible, e.g. heart surgery, has no convincing placebo!

36
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