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Observation (conditioning) vs intervention

Distinguish between: a variable T takes a value t naturally and cases
where we fix T=t by denoting the latter do(T=t)

p(Y =y|T =1t

Probability that Y=y conditional on finding T=t
l.e., population distribution of Y among individuals °
whose T value is t (subset)

p(Y = yldo(T = 1) ()—(

Probability that Y=y when we intervene to make T=t
i.e., population distribution of Y if everyone in the population had
their T value fixed at t.

Graph surgery

2



Structural Causal Models (SCM)

An SCM consists of d structural assignments

Xj Z:fj(PAj,Nj) ] ]:1,,d

Parents of X, i.e., direct causes of X Jointly independent noise variables

. C)

= f2 (X1 ,Nz) / \
- (%) (%)
e Ni,...,N4 jointly independent \/
e G is acyclic

3 Jonas Peters et al, Elements of Causal Inference (2017)



Intervention vs observation: Example

® Consider the following causal model with structure equations:
Random C = N¢ @ @
Variables < Vo B
EF:=4-C+ Ng
where, N¢, Ng ~ N (0, 1), are independent and iid. We expect:

e Apply do(C): G

+ The new distribution P(£|do(C)) # p(E)
« Since there are no other confounders: p(E|do(C)) = p(E|C')




Intervention vs observation: Example

® Consider the following causal model with structure equations:

Rand C .= NC
Vaar?at?lrens < E-— 4. C\_I:NE @ @

where, N¢, Ng ~ N (0, 1), are independent and iid. We expect:

® Apply do(C):
+ The new distribution P(£|do(C)) # p(E)
« Since there are no other confounders: p(E|do(C)) = p(E|C')

® Apply do(E):
e The new distribution p(O\dO(E)) — p(C)
e Since there are no other confounders: p(C’\do(E)) 75 p(C’\E)



Intervention vs observation: Analytical computation

C .=
E::fLV-CC'—I—NE @ @

N, Ng ~ N(0,1), No 1L Ng

Using, Var[aX] = a*Var[X], 4C ~ N(0, 16).
Using, 4C 1l Ng,and the sum of two normally distributed random
variables is another normally distributed random variable (by convolution):

E~N (IU4C + :LLNEvo-ZC' T O-JQ\TE)

= FE ~ N (0,17)
A fixed number @ G

p(E) =N (0,17) # N (8,1) = p(E|do(C = 2)) = p(E|C = 2)
7N (12,1) = p(E|do(C = 3)) = p(E|C = 3)



Intervention vs observation: Analytical computation
C .= NC
E:=4.-C+ Ng @ @
No,Ng ~N(0,1), No AL Ng

p(Cldo(E =2)) =N (0,1) = p(Cldo(EZ = Any r > 0)) = p(C)

# p(C|E = 2) inthe original distribution above
p(C, E)

p(E)

For a bivariate normal distribution (2 joint normal distributions), the marginal:

Proof: Use product rule: p(C\E) —

-~ - oC -
p(C|E) = N(1,6%) s.t. uzuc+pE(E—uE), ¢ =0t (1-p7)



Intervention vs observation: Analytical computation

C .=
E::flv-CC—I—NE @ @

N, Ng ~ N(0,1), No 1L Ng

Proof (Cont.): Use Cov(aX,bY +cZ) = ab Cov(X,Y) + ac Cov(X, Z)

__COV“IZ?)__4COVUVC,AQO—FCbVQVC,A@Q

OCOFE OCOFE

= p

S
\‘l

= D(CIE=2) =N (10? = 1) = p(Cldo(E)) £ p(CIE)



The adjustment formula

T: Drug usage
X: Sex
Y: Recovery

To know how effective the drugs is in the population, compare the hypothetical
interventions by which

(i) thedrugis administered uniformly to the entire population do(T=1) vs
(ii) complement, i.e., everyone is prevented from taking the drug do(T=0)

Aim: Estimate the difference (Average Causal Effect ACE, aka ATE)

p(Y = 1ldo(T = 1)) — p(Y = 1|do(T" = 0))




The adjustment formula

Using a causal theory, we aim towrite p(Y = y|do(T = t))in terms of
qguantities we can compute from the data, i.e., conditional probabilities.

The causal effect p(Y = y|do(T = t)) is equal to conditional probability
in the manipulated graph p, (Y = y|T = t) °

Key observation: Pm shares 2 properties with P: @ °

(i) pm(X =2)=p(X = z)isinvariant under the intervention, X is not affected by
removing the arrow from X to T, i.e. the proportion of males and females
remain the same before and after the intervention

(i) pm (Y =y|X =2, T =t) =p(Y =y|X =2,T =1t)isinvariant



The adjustment formula

Moreover, T and X are d-separated in the modified model: °

pm(X =2|T =t) = pm(X = 2) = p(X =) *
O—C



The adjustment formula

Moreover, T and X are d-separated in the modified model: °
pm(X =z|T' =1t) =pm(X =z) =p(X =x) *

Putting these together: @ ‘
p(Y =yldo(T =1t)) = pp,(Y = y|T =t) by definition

me(Y — y\T —t, X = g;)pm(X - x\T — t) law of total prob

me(Y =y|T =t, X =2)pp(X =2) %



The adjustment formula

Moreover, T and X are d-separated in the modified model: °
Pm(X =z|T =t) =pp(X =2)=p(X =x) *

Putting these together: @ ‘

P(Y — y\do(T — t)) — pm(Y — le — t) by definition
me(Y =y|T =t,X = 2)pn(X = z|T = t) law of total prob

me(Y =y|T =t, X =2)pp(X =2) %

Using the two invariance relations, we have the adjustment formula:

p(Y = y|do(T Zp =y|T =1, X = 2)p(X = )




The adjustment formula

Moreover, T and X are d-separated in the modified model: °
Pm(X =z|T =t) =pp(X =2)=p(X =x) *

Putting these together: @ ‘

P(Y — y\do(T — t)) — pm(Y — le — t) by definition
me(Y =y|T =t,X = 2)pn(X = z|T = t) law of total prob

me(Y =y|T =t, X =2)pp(X =2) %

Using the two invariance relations, we have the adjustment formula:

p(Y = y|do(T Zp =y|T =1, X = 2)p(X = )




The adjustment formula

p(Y =yldo(T =t)) = > p(Y =y|T =t,X = 2)p(X = )

Adjusting for X (controlling for X) ... seen before?

Example: T=1 taking the drug, X=1 male, Y=1 recovery

Table 1.1 Results of a study into a new drug, with gender being taken into account

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



The adjustment formula

T=1 taking drug
p(Y = y|do(T Zp =y|T =t,X =x)p(X = x) X=1 male

Y=1 recovery

p(Y =yldo(T=1))=pY =1T=1,X=1)pX=1)+pY =1T=1,X =0)p(X =0)

0.93(87 +270) | 0.73(263 + 80)

Y =1 T =1)) = = 0.832
0.87(87 +270)  0.69(263 + 80)
Y = 1|do(1T = — = 0.781
p( |do( 0)) —00 -+ =00 0.7818

ACE : p(Y = 1|do(T = 1)) — p(Y = 1|do(T = 0)) = 0.832 — 0.7818 = 0.0505 \/

Table 1.1 Results of a study into a new drug, with gender being taken into account

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



The adjustment formula

T=1 taking drug
p(Y = y|do(T Zp =y|T =t,X =x)p(X = x) X=1 male

Y=1 recovery

p(Y =yldo(T=1))=pY =1T=1,X=1)pX=1)+pY =1T=1,X =0)p(X =0)

0.93(87 +270) | 0.73(263 + 80)

p(Y =1|do(T = 1)) = — 0.832 ‘Stratiﬁcation! ‘

700 700
: 2 .69(2 ;
oV = 1ol — o)) — OSTET270) | 0.09263480) - |Note equivalence
700 700 to Rubin’s FW

ACE : p(Y = 1|do(T = 1)) — p(Y = 1|do(T = 0)) = 0.832 — 0.7818 = 0.0505 \/

Table 1.1 Results of a study into a new drug, with gender being taken into account

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



Pearl & Rubin

‘Pearl‘

E(Y|do(T =1)) = E(Y|T =1, X = 1)p(
E(Y|do(T = 0)) = E(Y|T =0, X = 1)p(
E(Y|do(T = 1)) — E(Y |do(T = 0))

=D +EY|T=1,X =0)p(X = 0)
=) +EY|T =0,X = 0)p(X = 0)

‘Rubin ‘ recall potential outcomes yo and y1() and ATE:

N
St ()] e (i i 1 i i
r=ErO) =Bl -y’ = = 3 (" - ")



Pearl & Rubin

‘Pearl‘
E(Y|do(T = 1))
E(Y|do(T = 0))
E(Y|do(T = 1)) —

(

E(Y|T=1,X = 1)p(X =1) -
E(Y|T\=0,X = D)p(X = 1) -
E(Y|do(T = 0))

> ('

1Emales

( @)__ygd)

CE(Y|T =1, X = 0)
CE(Y|T]= 0, X = 0)

= =
>
9@

v

) X, 6]

1Efemales

Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

The previous example may give the impression that X-specific analysis, as
compared to nonspecific, is the correct way forward. This is not the case.
For example, let T=drug, Y=recovery, X= blood pressure post-treatment,
l.e., important to take into account how the data is generated. Here, we
know:

(i) thedrug affects recovery by lowering the blood pressure
(ii) but it has a toxic effect for those who take it

NB: Data (numbers) in this table are identical to those in Table 1.1.

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

For general population, the drug might improve recovery rates because of its effect on

blood pressure. But in low BP/high BP post-treatment subpopulations, we only observe
the toxic effect of the drug.

Aim, as before, to gauge the overall causal effect of the drug on recovery.

Unlike before, it does not make sense to separate results by blood pressure as treatment
affect recovery via reducing BP.

Contrast this with the a situation per BP is measure before treatment and direction of
arrow from T to X is reversed.

Therefore, we should recommend treatment in this case because 78% < 83%.

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

Pearls algorithmic approach tells us to adjust or not. Starting with:
p(Y = 1|do(T = 1)), intervene on T. But since no arrow is entering T, there
will be no change in the graph: p(Y = 1|do(T =1)) =p(Y = 1|T =1)

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

Pearls algorithmic approach tells us to adjust or not. Starting with:
p(Y = 1|do(T = 1)), intervene on T. But since no arrow is entering T, there
will be no change in the graph: p(Y = 1|do(T =1)) =p(Y = 1|T =1)

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

The Causal Effect Rule: Given a graph G in which a set of variables PA are
designated as the parents of T, the causal effect of T on Y is given by:

p(Y = y|do(T Zp =y|T =t,PA = X)p(PA = X)

Pearl, Causal Inference in Statistics (2016)



The Backdoor Criterion

Under what conditions does a causal model permit computing the causal effect of one variable
on another, from data obtained from passive observations, with no intervention? i.e.,

Under what conditions is the structure of a causal graph sufficient of computing a causal effect
from a given data set? ldentifiability

Backdoor Criterion: Given an ordered pair of variables (T)Y) in a DAG G, a set of variables X
satisfies the backdoor criterion relative to (T)Y) if:

(i) nonodein Xisadescendentof T

(ii) Xblock every path between T and Y that contains an arrow into T
If X satisfies the backdoor criterion then the causal effect of Ton Y is given by:

p(Y = yl|do(T Zp =y|T =X =2)p(X = )

v X

Pearl, Causal Inference
in Statistics (2016)




The Backdoor Criterion

Under what conditions does a causal model permit computing the causal effect of one variable
on another, from data obtained from passive observations, with no intervention? i.e.,

Under what conditions is the structure of a causal graph sufficient of computing a causal effect
from a given data set? ldentifiability

Backdoor Criterion: Given an ordered pair of variables (T)Y) in a DAG G, a set of variables X
satisfies the backdoor criterion relative to (T)Y) if:

(i) nonodein Xisadescendentof T

(ii) Xblock every path between T and Y that contains an arrow into T
If X satisfies the backdoor criterion then the causal effect of Ton Y is given by:

p(Y = y|do(T Zp =y|T =t,X = 2)p(X = x)

In other words, condition on a set of nodes X such that:

(i) We block all spurious paths between T and Y

(ii) We leave all direct paths from T to Y unperturbed

(iii) We create no new spurious paths (do not unblock any new paths)

Pearl, Causal Inference
in Statistics (2016)



The Backdoor Criterion: Example 1

T =Drug,Y =recovery, W = weight, Z = unmeasured socioeconomic status

Z affects both weight and choice to receive treatment (but Z data was not
recorded)

Can we compute the causal effect of T on Y, using W only
(even though Z is not measured)?




The Backdoor Criterion: Example 1

T =Drug, Y =recovery, W = weight, Z = unmeasured socioeconomic status
Z affects both weight and choice to receive treatment (but Z data was not
recorded)

Can we compute the causal effect of T on Y, using W only
(even though Z is not measured)?

Yes:, W satisfies the back-door path because:
(i) WhblocksT<-Z->W->Y
(ii) W leaves the directed path from T to Y unperturbed @

(iii) W is not a collider and is not adescendent of T

Y = ldofT =) = (¥ =yIT = £ = wp(I¥ = u) f




The Backdoor Criterion: Example 2

In computing the causal effect of T on Y, which variables should/not
we condition on?



The Backdoor Criterion: Example 2

In computing the causal effect of T on Y, which variables should/not
° @ Condition on X1
Condition on either or
both X2, X3

NOT X5 and X
Because descendants of T °

and colliders, i.e.,
Conditioning opens a new

path between T and X! °

we condition on?



The Backdoor Criterion: Example 3

Previous examples might have given the impression that
“We should never contain on colliders!”



The Backdoor Criterion: Example 3

Previous examples might have given the impression that
“We should never contain on colliders!”

This is not correct, because sometimes it's unavoidable:
In this case, we need to condition on Z to stop the backdoor T <-Z->Y

But then, this opens a new backdoor T <-X1->7Z<-X2->Y

So we need to condition on {Z, X1} or {Z,X2} or {Z X1,X2}
Therefore, even though Z is a collider, we managed to get causal identifiably



Rubin & Pearl

Rubin

Pearl

SUTVA

Unconfoundedness

Potential outcomes: Yo®), y1()
Observed: Yo}, Unobserved: y*1()

Implicit assumption of no interference between
any pairs of individual

Back-door criterion satisfied

Counterfactuals are equivalent to individual
unobserved outcomes in Rubin
Do-operation




Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20:

‘ Causality ‘
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confounders ‘ ‘ Unobsv confounders Constraint- Score-
FCMs
based based
Regression || Propensity Front-door
. IV o
Adjustment score

Rubin Rubih, Pearl
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