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Do Calculus

® Do-calculus: Contains, as subsets:
e Backdoor criterion
e Front-door criterion

® Allows analysis of more intricate structure beyond back- and front-door

® Uncovers all causal effects that can be identified from a given causal
graph

® Power of causal graphs is not just representation but towards discovery
of causal information (though with many assumptions and caveats...)



Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20:

‘ Causality ‘
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confounders ‘ ‘Unobsvconfounders Constraint- Score-
FCMs
based based
Regression || Propensity Front-door
. IV .
Adjustment score criterion
Rubin Rubin, Pearl




Directed vs Undirected Aside



Undirected vs Directed Graphs

Converting directed models to undirected models (cannot be represented perfectly)
For every pair of variable x and y add an undirected edge (a moralised graph):

- If there is adirected edge, or,

- If x and y are parents of a node.

L

Same condltlonal Not the same (cond.)
independencies independencies .
Many edge are added, hence losing many

implied conditional independencies.

Deep Learning Book, lan Goodfellow et al., page 568



Undirected vs Directed Graphs

Similarly, undirected models can contain substructures that no directed model can
represent (i.e., the latter cannot represent all conditional independencies in the former)

Undirected model (left) simultaneously has a 1L ¢|{b,d} and b 1L d|{a, c}
No directed model can capture this.

Instead triangulate (centre) and derive graph on the right, ensuring it remains a DAG
(e.g. here use alphabetical ordering)

In conclusion: directed and undirected graphs encode strictly
different (conditional) independence information

Deep Learning Book, lan Goodfellow et al., page 568



Markov blanket & Markov boundary

A Markov blanket of a random variable Xjin a random variable set S={X,..., Xn} is
any subset S1 of S, conditioned on which X is independent of all other variables

outside of S1:

X;

S\S1 | St

In other words, S1 contains all the information needed to infer X, and the
variables in S\S1 add no further information.

A Morkov blanket need not be unique. Any set in S that contains a Markov blanket

is also a Markov blanket itself.

""-- ....'.
. L
L 4
L L
* L 4
“ .0
* *
‘Q *
* *
* *
* *
s *
r's *
'y *
ry .
Iy .
Iy .
N .
.
L]
» ]
n L]
n u
» ]
- ]
. [ ]

|
.

|

.

.
.
.
.
.
.
*
*
*
o
S
.
*
vy
n

- Parents
- Children
- Coparents

A Markov boundary is a Markov blanket none of
whose subsets are Markov blankets themselves



Causal Discovery



Learning causal relationships: Learn set of edges

e A causal structure constrains the possible types of probability
distribution that can be generated from that structure



Learning causal relationships: Learn set of edges

e A causal structure constrains the possible types of probability
distribution that can be generated from that structure

e Reverse: Obtain causal structures from probability distributions
via causal inference
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Learning causal relationships: Learn set of edges

e A causal structure constrains the possible types of probability
distribution that can be generated from that structure

e Reverse: Obtain causal structures from probability distributions
via causal inference

e Types of constraints: Conditional independencies (all parametric
distributions), Vanishing determinants of partial covariance
matrices (linear Gaussian with unobserved confounders), Unequal
dependence on residuals (Non-linear additive noise, or linear non-
Gaussian), interventions/perturbations, time-series ...
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Causal Discovery Methods (based on graphical models)

Class of Algorithm

Name

Short

Assumptions ]
comings

Any distribution, No
unobsv. confounders,

PC (oldest) Vialew e, Causal info
. faithfulness only up to Complete
Constraint-based equivalence undirected
Any distribution, classes, graph
Asymptotically correct =~ Non bivariate
FCI )
with confounders,
Markov cond, faithfulness
Empty graph,
Score-based GES clc\)lr?fz:cr:zse\;.s Non-bivariate = adds edges,
removes some
Requires
. additional
Functional Causal Lincam/ g At assumptions Structural
Models (FCMs) ANM v U (not general),  Equation Model
harder for

discrete data

12



Assumption 1: The Markov Condition

Any variable X is independent of all other variables, conditional on
its parents (PA) and unobserved variables (noise):

J
P(xy,-- ,xq) = | | P(x;|PA;,¢;)
j=1

e Absent edge implies conditional independence (ClI)
e Observing conditional dependence implies an edge

For example: Yellow teeth, lung cancer, smoking

Lung
cancer

An edge is wrongly inferred,
when parent is omitted

Yellow Lung
teeth cancer
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Assumptions 2 & 3: Causal sufficiency & Faithfulness

® Causal sufficiency: For any pair of variables X, Y, if there exists a
variable Z which is a direct of cause of both Xand Y, then Z is
included in the causal graph (Z may be unobserved)

® A probability distribution P is faithful to a DAG G if no Cl relations

other than the ones entailed by the Markov property are present.
e “Conjugate" to the Markov condition
 Edge implies conditional dependence
e Observing Cl implies absence of an edge
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Assumptions 3: Faithfulness

It fails when distributions are set up in such a way that paths exactly cancel:

P=—-—aB+Up
T=BP+~vB+Ur

Pregnancy

=T=(—af+v)B+U
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Assumptions 3: Faithfulness

It fails when distributions are set up in such a way that paths exactly cancel:

P=—-—aB+Up
T=BP+~vB+Ur

Pregnancy

=T=(—af+v)B+U

Soif v = af , nodependency between T and B will be observed!
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Assumptions 3: Faithfulness

It fails when distributions are set up in such a way that paths exactly cancel:

P=—aB+Up
T=BP+~vB+Ur

Pregnancy

=T=(—af+v)B+U

Soif v = af , nodependency between T and B will be observed!

e Fails in regulatory systems, e.g. home temperature, outside temp,
thermostat: By design, thermostat keeps the inside temp independent of
outside, always fixed at T*

e Biology and homeostasis!

Often keep the assumption and argue that most distributions are
multimodal and will not cancel each other exactly ...
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Distinguishing causal structures: V-structures
Recall collider example:
Battery
Gas tank 1IBattery
Gas tank /Battery | Car starts =0 @
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Distinguishing causal structures: V-structures
Recall collider example:
Battery
Gas tank 1IBattery
Gas tank /Battery | Car starts =0 @

e Markov Equivalence Class (MEC): Two graphs G and G’ belong to

the same equivalence class iff each conditional independence
implied by G is also implied by G’ and vice versa.

e \We can learn edges/directions using MEC and d-separation.
e D-separations gives all Cl implied by graph

19



Markov Equivalence Class (MEC)

True DAG

A—- B —=C A— B« (C

All Observed Cls

Set of DAGs in MEC

CPDAG
(complete partially DAG)

Al C|B Al Clf

A—-B—>C

A« B« (C A— B« (C
A«— B —=(C

A— B —C A— B+ (C
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The Search Space of Causal Graphs

n

e For |V|=n nodes there are (2

) — %(n — 1)n distinct pairs of variables

e There are at least 22 (*~1)n possible graphs where between any two
pairs there is either an edge or no edge.

e There are at most 32 ("~ 1)~ possible graphs since we may have
ecitherof: A > B, A<~ B, A B

e Grows super exponentially in the number of nodes

e Requires efficient causal discovery algorithms: PC algorithm
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Peter-Clark (PC) Algorithm

True causal graph: '
1. Start with the complete graph
”’ C > < D )

2. Zeroth order Cl, A 1L B, by faithfulness:

Need statistical °
independence testing. G ¢ @




Peter-Clark (PC) Algorithm

3. 1st order ClI, A
B

D
D

C, by faithfulness:
C

O



Peter-Clark (PC) Algorithm
3. 1st order Cl, A D C, by faithfulness:

B 1L D|C ©

4. No higher order Cl observed. Notice that conditioning sets only need to
contain neighbours for the two nodes due to the Markov condition. We do
not know the parents but parents are a subsets of neighbours. As the graph

becomes sparser, the number of tests to be performed decreases. This
makes PC very efficient.




Peter-Clark (PC) Algorithm
3. 1st order Cl, A D C, by faithfulness:

B 1L D|C ©

4. No higher order Cl observed. Notice that conditioning sets only need to
contain neighbours for the two nodes due to the Markov condition. We do
not know the parents but parents are a subsets of neighbours. As the graph

becomes sparser, the number of tests to be performed decreases. This
makes PC very efficient.

5. Orient V-structures (colliders): take triplets where 2 nodes are connected

tothe3rd: A /L B|C only.

° Note C' < D cannot be as it would have
° a been a collider (not detected in 5)



Remarks

e Missing/unobserved variables could lead to wrong/biased graphs

e Conditional independence tests are subject of active research

e Parallelised PC

e PC for heterogeneous data etc.

e PC + score-based

Nevertheless, the assumptions behind these are very strong!
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