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Do-Calculus

Not all causal quantities are identifiable
(this depends on the structure of the graph)

Here, we generalise the rules of front/back-door criteria: do-calculus

Let X, Y, Z be arbitrary disjoint sets of nodes in a DAG G.
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Do-Calculus

Not all causal quantities are identifiable
(this depends on the structure of the graph)

Here, we generalise the rules of front/back-door criteria: do-calculus

Let X, Y, Z be arbitrary disjoint sets of nodes in a DAG G.

Notation
GxThe graph obtained by deleting all arrows pointing to nodes in X
G x The graph obtained by deleting all arrow emerging from nodes X

Note for example: Gx = G+
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Do-Calculus

Not all causal quantities are identifiable
(this depends on the structure of the graph)

Here, we generalise the rules of front/back-door criteria: do-calculus

Let X, Y, Z be arbitrary disjoint sets of nodes in a DAG G.

Notation
GxThe graph obtained by deleting all arrows pointing to nodes in X
G x The graph obtained by deleting all arrow emerging from nodes X
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Do-Calculus

Not all causal quantities are identifiable
(this depends on the structure of the graph)

Here, we generalise the rules of front/back-door criteria: do-calculus
Let X, Y, Z be arbitrary disjoint sets of nodes in a DAG G.

Notation

G The graph obtained by deleting all arrows pointing to nodes in X
G x The graph obtained by deleting all arrow emerging from nodes X

More examples: (5
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Do-Calculus

Not all causal quantities are identifiable
(this depends on the structure of the graph)

Here, we generalise the rules of front/back-door criteria: do-calculus
Let X, Y, Z be arbitrary disjoint sets of nodes in a DAG G.

Notation

G The graph obtained by deleting all arrows pointing to nodes in X
G x The graph obtained by deleting all arrow emerging from nodes X

More examples: X7
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Do-Calculus Rules

Let X, Y, Z, W be arbitrary disjoint sets of nodes in a DAG G

Rule 1 (insertion/deletion of observations):

p(Yldo(X =), Z,W) =p(Y|do(X =z),W) it (Y 1L Z)|X,W in G+

l.e.if Y and Z are d-separated by X, W in a graph where incoming edges in X have
been removed.



Do-Calculus Rules

Let X, Y, Z, W be arbitrary disjoint sets of nodes in a DAG G

Rule 1 (insertion/deletion of observations):

p(Y|do(X =), Z,W)=p(Y|do(X ==z), W) if (Y 1L Z)| X, W in G+

l.e.if Y and Z are d-separated by X, W in a graph where incoming edges in X have
been removed.

In the special case where X —tfile above states:

pY|Z, W) =p(Y|W)if (Y 1L Z2)|W

Which is simply d-separation. So the above is the ‘,
i generalisation of d-separation in the presence of an intervention do(X=x) |



Do-Calculus Rules

Let X, Y, Z, W be arbitrary disjoint sets of nodes in a DAG G

Rule 1 (insertion/deletion of observations):

p(Yldo(X =), Z,W) =p(Y|do(X =z),W) it (Y 1L Z)|X,W in G+

Rule 2 (Action/observation exchange):

p(Yldo(X =z),do(Z = 2),W) =p(Y|do(X =x),2, W) it (Y 1L Z)|X,W in G,

l.e.if Y and Z are d-separated by X, W in a graph where incoming edges in X and
outgoing edges from Z have been removed.

This rules provides a condition for an external intervention do(Z=z) to have the

same effect on Y as the passive observation Z=z.
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Do-Calculus Rules

Let X, Y, Z, W be arbitrary disjoint sets of nodes in a DAG G

Rule 1 (insertion/deletion of observations):

p(Y|do(X =), Z,W)=p(Y|do(X ==z), W) if (Y 1L Z)| X, W in G+

Rule 2 (Action/observation exchange):

p(Yldo(X =z),do(Z = 2),W) =p(Y|do(X =x),2, W) it (Y 1L Z)|X,W in G,

' In the special case were X = () the above states:
p(Y|do(Z =2),W)=pY |z, W)if (Y 1L Z)|W in G
Which is the generalisation of backdoor criterion (adjustment formula).
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Do-Calculus Rules

Let X, Y, Z, W be arbitrary disjoint sets of nodes in a DAG G

Rule 1 (insertion/deletion of observations):

p(Yldo(X =), Z,W) =p(Y|do(X =z),W) it (Y 1L Z)|X,W in G+

Rule 2 (Action/observation exchange):

p(Yldo(X =z),do(Z = 2),W) =p(Y|do(X =x),2, W) it (Y 1L Z)|X,W in G,

Rule 3 (Insertion/deletion of actions):

p(Y|do(X = z),do(Z = z), W) = p(Y|do(X = x), W) if (Y LL Z)|X, W in Gz

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Gy
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Do-Calculus Rules

Let X, Y, Z, W be arbitrary disjoint sets of nodes in a DAG G

Rule 1 (insertion/deletion of observations):

p(Yldo(X =), Z,W) =p(Y|do(X =z),W) it (Y 1L Z)|X,W in G+

Rule 2 (Action/observation exchange):

p(Y|do(X =x),do(Z = z),W) =p(Y|do(X =x),z, W) if (Y 1L Z)|X, W in GYZ

Rule 3 (Insertion/deletion of actions):

p(Y|do(X = z),do(Z = z), W) = p(Y|do(X = x), W) if (Y LL Z)|X, W in Gz

Provides conditions for introducing/deleting an external intervention without
affecting the conditional probability of Y.,



Graph examples
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Graph examples
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Graph examples

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Gy
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Derivation of front-door criterion using do-calculus
Task 1: Compute p(B|do(A = a))

We need to write this in a format without the ‘do’. Rule 2 is useful here.
We use Rule 2, special case:

p(B|do(A =a)) =p(Bla) if (B 1L A) in G4

And the condition is satisfied becausethepath A <+ U — C < B
Is blocked by C, so B and A are d-separated in this graph.

o [
ORO0
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Derivation of front-door criterion using do-calculus
Task 2: Compute p(C'|do(B = b))

We cannot apply rule 2 to replace do(B = b) with b because Gp
contains a back-door pathfromBtoC: B+ A+ U — C




Derivation of front-door criterion using do-calculus
Task 2: Compute p(C'|do(B = b))

We cannot apply rule 2 to replace do(B = b) with b because Gp
contains a back-door pathfromBtoC: B+ A+ U — C

BUT, we can use block this path by measuring A. So marginalising gives:

p(Cldo(B =) = 3 p(A, Cldo(B = ) = 3 p(C|4,do( = B)p(Aldo(B =b)
A
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Derivation of front-door criterion using do-calculus

Task 2: Compute p(C'|do(B =

We cannot apply rule 2 to replace do(B = b) with b because Gp
contains a back-door pathfromBtoC: B+ A+ U — C

BUT, we can use block this path by measuring A. So marginalising gives:

p(Cldo(B

p(Aldo(B =

Immediate via do-operation/graph manipulation
(with B being a descendent of Ain G), or, Rule 3:
Due to d-separation of A and B (conditional on nothing)

in graph

Zp (A, Cldo(B

p(A)

Gy

= Zp(C’]A, do(B =
A
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Derivation of front-door criterion using do-calculus
Task 2: Compute p(C'|do(B = b))

We cannot apply rule 2 to replace do(B = b) with b because Gp
contains a back-door pathfromBtoC: B+ A+ U — C

BUT, we can use block this path by measuring A. So marginalising gives:

p(C|do(B Zp (4,C|do(B = b)) =

p(C|A,do(B =0b)) =p(C|A,b) (C 1 BJA)in Gp

Which uses Rule 2, with C and B d-separated given A. m Gg
Therefore,

p(Cldo(B Zp C|A, b)p(A) (A )y—(8) @
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Derivation of front-door criterion using do-calculus

Task 3: Compute p(C|do(A = a)). Marginalising over B gives:

P(OHo(A = ) = D p(C1B, o = ) Bdo(d o))

Second term already done. First term, no rule can be applied to eliminate do(A).

23 Pearl’s 2009 book, page 87



Derivation of front-door criterion using do-calculus

Task 3: Compute p(C|do(A = a)). Marginalising over B gives:
p(Cldo(A = a)) = p(C|B,do(A = a))p(B|do(A = a))
B

Second term already done. First term, no rule can be applied to eliminate do(A).
Instead, use Rule 2 to add do(B):

p(C|B,do(A =a)) =p(Cldo(B =b),do(A = a))
since, (C' 1L B|A) in Gz
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Derivation of front-door criterion using do-calculus

Task 3: Compute p(C|do(A = a)). Marginalising over B gives:

Second term already done. First term, no rule can be applied to eliminate do(A).

Instead, use Rule 2 to add do(B):

p(C|B,do(A = a)) = p(Cldo(B = b),do(A = a))
since, (C' 1L B|A) in Gz

Then, we use Rule 3, to delete do(A):

p(C|B,do(A = a)) = p(Cldo(B = b))

since, (C' 1L A|B) in G45

which again, we have competed before.
25
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Derivation of front-door criterion using do-calculus

Task 3: Compute p(C|do(A = a)). Marginalising over B gives:

Putting all terms together:

p(Cldo(A=a))=> p(Bla)) p(C|A", B)p(A)
v

B

Front-door criterion!

26 Pearl’s 2009 book, page 87



A statement about estimation
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Recall: The Backdoor Criterion

Backdoor Criterion: Given an ordered pair of variables (T)Y) in a DAG G, a set of variables X
satisfies the backdoor criterion relative to (T)Y) if:

(i) nonodein Xisadescendentof T

(ii) Xblock every path between T and Y that contains an arrow into T
If X satisfies the backdoor criterion then the causal effect of Ton Y is given by:

p(Y = y|do(T Zp =y|T =t,X =2)p(X = =)

In other words, condition on a set of nodes X such that:

(i) We block all spurious paths between T and Y

(ii) We leave all direct paths from T to Y unperturbed

(iii) We create no new spurious paths (do not unblock any new paths)

Any set X that satisfies the backdoor criterion (hence can be used in the adjustment
formula) is called an Adjustment Set



Pearl: To adjust or not to adjust

Pearls algorithmic approach (do-calculus) tells us to adjust or not.

v X

29 Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

Pearls algorithmic approach (do-calculus) tells us to adjust or not.

G&/ X

The Causal Effect Rule: Given a graph G in which a set of variables PA are
designated as the parents of T, the causal effect of Ton Y is given by:

p(Y = y|do(T Zp =y|T =t,PA = X)p(PA = X)

Conclusion: The set of parents of T is always an adjustment set for the causal effect
of TonY,i.e, toidentify

30 Pearl, Causal Inference in Statistics (2016)




Confounder vs not a confounder

Classical
confounder
case

T

No
confounder
case

Ex |Ey [Y]X,T]] Z/dw p(ﬂ?)/dy y p(ylz,t)

d:v p(z) / dy y (?z’x‘xt‘)t )

p(y, x[t)

dx p(x dy Y
p(z)
/dy y p(ylt) = Ey [Y|T],

j Independence of Xand W

on the RHS graph j.,




Optimal adjustment sets

Question: Suppose we identify multiple adjustment sets, which do we choose?
Idea: We aim to estimate a causal effect, e.g., p(Y = y|do(X) = x) but we do so

from observational data. Thus, there will be some error due to finite data and the
smaller this error, the better our estimate of the causal effect.
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Optimal adjustment sets

Question: Suppose we identify multiple adjustment sets, which do we choose?
Idea: We aim to estimate a causal effect, e.g., p(Y = y|do(X) = x) but we do so
from observational data. Thus, there will be some error due to finite data and the

smaller this error, the better our estimate of the causal effect.

Initial guess: The more variables we condition on, the harder it is to estimate a
conditional probability or conditional expectation value....

... 50 the smallest adjustment set should be the optimal adjustment set!

Adjustment sets:
{WLW, Z},{W, S}, and {W, S, Z}

... SO it should be {W}?

33



Simulation

W is a confounder, so always needs to be adjusted for

( 2
For simplicity, we simulate a linear model /! X~ NO,75) . 2
from the causal graph below, and Y =X+e  withe~N(0,07%)

consider different noise on source ( 7, and noise on target ( J°

Idea: Lowering/Increasing noise on X corresponds to conditioning on Z
1. Conditioning on Z reduces variance in X

2. Conditioning on Sreduces varianceinY
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Simulation: Lower noise on source X (condition on Z)

For simplicity, we simulate a linear model
from the causal graph below, and

\Y:X—I—e,

!XNN@ﬁ)

with € ~ N (0, 0?)

consider different noise on source (T%, and noise on target ( 0)2

Y1

2 -1 0
X1
## Estimate Std. Error
## (Intercept) 0.04
## X1 0.95

°® o
N o ©
o Rg8?
- - (90630

N
> 0 0
) %O &
I B 63%6@3 &
o)
- 7 °
©)
o)
®
©)
[ [ I [ I
0.2 0.0 0.1 0.2
X2
## Estimate Std. Error
## (Intercept) 0.048 0.11
## X2 -0.670 1.10
35
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Simulation: Lower noise on target Y (condition on S)

( 2
For simplicity, we simulate a linear model | X ~N(0,7%)

Y =X +e¢, with € ~ N (0, 02)

from the causal graph below, and
consider different noise on source (T%, and noise on target ( 0)2

o - o Parameters (n=100):
T1=1vsm=1

o1 =1vsoy =0.1

Y1
Y3

-2 -1 0 1 2 2 -1 0 1 2 3

## Estimate Std. Error ## Estimate Std. Error

## (Intercept) 0.04 0.10 ## (Intercept) 0.011 0.0095
## X1 0.95 0.12 ## X3 1.000 0.0096 ° °
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Optimal adjustment sets

Question: Suppose we identify multiple adjustment sets, which do we choose?

Idea: We aim to estimate a causal effect, e.g., p(Y = y|do(X butave do so from
observational data. Thus, there will be some error due to finite data and the smaller
this error, the better our estimate of the causal effect.

Initial guess: The more variables we condition on, the harder it is to estimate a
conditional probability or conditional expectation value....

...so the smallestxjustment set should be the optimal adjustment set!

Adjustment sets: e @
{WLW, Z},{W, S}, and {W, S, Z} ‘

Optimal set is {W,S}!!!
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Optimal adjustment sets

Theorem (Rotnitzky and Smucler, 2020)
The most efficient adjustment set to use for the effect of Xon Y is

pag(cng(X —Y)) \ (cng(X = Y)U{X})

where cng(X — Y) are all the nodes on a causal (i.e. directed) path from X to Y,
but excluding X itself. (So parents of this set not on the causal path.)

Example

Here cng(X — YY) consists only of Y
The parentsof Y are X, W,and S G

Thus, by the above the optimal a @
adjustment set is {W,S} “
(V—%




Optimal adjustment sets

Theorem (Rotnitzky and Smucler, 2020)
The most efficient adjustment set to use for the effect of Xon Y is

pag(cng(X —Y)) \ (cng(X = Y)U{X})

where cng(X — Y) are all the nodes on a causal (i.e. directed) path from X to Y,
but excluding X itself. (So parents of this set not on the causal path.)

Remarks

1. Optimal set adjusts for some unnecessary variables (here, S) since these are
not actually confounders

2. Optimal set does not control for instruments (here, Z)

The key quantity to keep as small as possible for optimality is variance in ¥

variance in X
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Overview of the course

® Lecture 1: Introduction & Motivation, why do we care about causality?
Why deriving causality from observational data is non-trivial.

® Lecture 2: Recap of probability theory, variables, events, conditional
probabilities, independence, law of total probability, Bayes’ rule

® Lecture 3: Recap of regression, multiple regression, graphs, SCM

® Lecture 4-20:

‘ Causality ‘
‘ Causal Effect Estimation ‘ ‘ Casual Discovery
‘ Obsv confounders ‘ ‘Unobsvconfounders Constraint- Score-
FCMs
based based
Regression || Propensity Front-door
. IV o
Adjustment score criterion
Rubin Rubirg
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