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Conditional Interventions & Covariate-specific effects

So far: Interventions have been limited to actions that force a variable T to take
on a specified value t.

More generally: Interventions can involve dynamic policies, i.e., T is made to
respond in a specific way to another variable Z, via. t = g(z)or
T=t with probability P(t|z)



Conditional Interventions & Covariate-specific effects

So far: Interventions have been limited to actions that force a variable T to take
on a specified value t.

More generally: Interventions can involve dynamic policies, i.e., T is made to
respond in a specific way to another variable Z, via. t = g(z)or
T=t with probability P(t|z)

Example: A doctor administers a drug only to patients whose temperature Z
exceed a certain level Z=z. The action of the doctor is conditional on the value of
Z, do(T = g(Z)),where

)
(Z) < 1 when Z > z Make stochastic (to avoid positivity violation, e.g. 75% vs 25%)
g p—

0 otherwise 50%, 50%

\

The result of such apolicyis: p(Y = y|do(T = g(Z))
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Conditional Interventions & Covariate-specific effects

“z-specificeffect”’ of TonY: p(Y = y|do(T =1t),Z = z)
Distribution of Y in a subset of the population for which Z=z
(Recall, ATE vs CATE)

Example: How does the treatment affect a specific age group, or
individuals with blood sugar levels = z, etc.

We will use the adjustment formula, but modified for the conditional case above:
Paths need to remain blocked when we additionally condition on Z.



Conditional Interventions & Covariate-specific effects

“z-specificeffect”’ of TonY: p(Y = y|do(T =1t),Z = z)
Distribution of Y in a subset of the population for which Z=z
(Recall, ATE vs CATE)

Example: How does the treatment affect a specific age group, or
individuals with blood sugar levels = z, etc.

We will use the adjustment formula, but modified for the conditional case above:
Paths need to remain blocked when we additionally condition on Z.

The z-specific effect p(Y = y|do(T =1t), Z = z)is identified whenever we can
measure a set S of variable such that S U Z satisfies the backdoor criterion. The
z-specific effect is given by the modified adjustment formula:

p(Y =yldo(T =1t),Z = z2) = Zp(Y:y]T:t,S: s, Z =z)P(S=s|Z=z2)
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Conditional Interventions & Covariate-specific effects

“z-specificeffect”’ of TonY: p(Y = y|do(T =1t),Z = z)
Distribution of Y in a subset of the population for which Z=z
(Recall, ATE vs CATE)

Example: How does the treatment affect a specific age group, or
individuals with blood sugar levels = z, etc.

We will use the adjustment formula, but modified for the conditional case above:
Paths need to remain blocked when we additionally condition on Z.

The z-specific effect p(Y = y|do(T =1t), Z = z)is identified whenever we can
measure a set S of variable such that S U Z satisfies the backdoor criterion. The
z-specific effect is given by the modified adjustment formula:




Conditional Interventions & Covariate-specific effects

Need to ensure conditional on Z does not open back-doors, e.g.,
if Z is a collider, we need to make sure spurious paths created by it are blocked

Back to our z-dependent policy p(Y = y|do(T = g(Z)):
p(Y = y|do(T = g(Z Zp = yldo(T = g(2)), Z = 2)p(Z = z|do(T = g(Z))

Since Z occurs before T Zp = yldo(T = g(2)),Z = z)p(Z = z2)

_ZP = y|do(T =), Z = 2)|t=g(»)p(Z = 2)



Conditional Interventions & Covariate-specific effects

Need to ensure conditional on Z does not open back-doors, e.g.,
if Z is a collider, we need to make sure spurious paths created by it are blocked

Back to our z-dependent policy p(Y = y|do(T = g(Z)):
p(Y = y|do(T = g(Z Zp = yldo(T = g(2)), Z = 2)p(Z = z|do(T = g(Z))

Since Z occurs before T Zp = yldo(T = g(2)),Z = z)p(Z = z2)

_ZP = y|do(T =), Z = 2)|t=g(»)p(Z = 2)

Suppose Z only takes one value in this sum z* then only one term Z=z* occurs in
the sum with probability one. More generally,

If multiple Zs can occur, the stochastic intervention is an average of the
z-specific effects.
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Example: c-specificeffectof TonY

Q: What is the causal effect of Ton Y?
Recalling the adjustment formula, we need to condition on Z, which is a collider
node, so need to block the spurious path by e.g., condition on A (a parent of T)

p(Y = yldo(T Zp —yT=t,Z=2A=a)p(Z =2z A=
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Example: c-specificeffectof TonY

Q: What is the causal effect of Ton Y?
Recalling the adjustment formula, we need to condition on Z, which is a collider
node, so need to block the spurious path by e.g., condition on C will also work:

p(Y = y|do(T Zp —yT=t,Z=2C=c)p(Z=1zC =
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Example: c-specificeffectof TonY

oV xS c

Q: What is the c-specific causal effect of Ton Y?

p(Y =yldo(T =1),C=c)=) pY =y|T =t,Z=12C =c)p(Z =2C =)

(From the rule on slide 6.)
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Example: c-specificeffectof TonY

oV xS c

Q: What is the z-specific causal effect of Ton Y?

p(Y =y|do(T =1t),Z =2z) = Zp(Y:y\T:t,Z:z,C:C)p(C:ch:z)

(From the rule on slide 6.)
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Example: c-specificeffectof TonY

oSV

Q: What is the z-dependent causal effect of T on Y, under the strategy:

9(Z) —{

0 Z<L2
1 Z>2

where Z € {1,2,3,4,5}

= yldo(T' = g(2)), Z = z)p(Z
=0),Z=1)p(Z =1)
do(T = 0), Z = 2)p(Z = 2)
do(T = 1), Z = 3)p(Z = 3)
do(T'=1),7Z =4)p(Z = 4)
do(T'=1),7Z =5)p(Z =5)

z) productrule



Example: c-specificeffectof TonY

oV xS c

Q: What is the z-dependent causal effect of T on Y, under the strategy:

0 £ <2
g(Z)—{1 7> 9 where Z € {1,2,3,4,5}

p(Y =yldo(T =g(Z)) =) p(Y = z) product rule

Use results from the
z-specific effect




Estimation via Inverse Probability Weighing (IPW)

Practical problem with intervention procedures: backdoor and front-door
criteria tell us whether it is possible to predict the result of interventions, e.g.,

p(Y = y|do(X = x))

can be expressed in terms of observed probabilities.

This requires conditioning on a set Z of covariates satisfying one of the criteria
... but in practice, this conditioning may be problematic!

For example:

1. Z may consist of many variables, each spanning many values

2. Number of samples with Z = z may be small —> poor statistics

One approach (recall): Inverse Probability Weighing (IPW)
16



Estimation via Inverse Probability Weighing (IPW)

Approach: Inverse Probability Weighing (IPW)

Requires:

1. Adjustment set of variables Z to apply one of the criteria
2. Corresponding propensity score function: g(z, z) = p(X = x|Z = 2)
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Justification for Inverse Probability Weighing (IPW)

Comparison with conditional probability
Like filtering:

1. Omit all cases for which, e.g., X = x does not hold
2. Normalise the surviving cases so probabilities add up to one.

In practice, this is done by uniformly multiplying by afactor 1/p(X = x) ,i.e,

pY =y, 72 =2 X =u1x)
p(X =)

pY =y, Z=z2|X=2) =

Can think of this as the probability of each surviving case being boosted by this
1/P(X=x) factor (uniformly so).
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Justification for Inverse Probability Weighing (IPW)

Hypothetical probability
Examine the population created by the operation do(X = x),and see how

each case is changed as a result of this operation.

This follows from the adjustment formula w.r.t. an adjustment set Z:

p(Y = y|do(X Zp =y|X ==,Z = 2)p(Z = 2)

o PrY =yl X =7 =2)p(X =z|Z = 2)p(Z = 2)
_Z p(X = z|Z = z)

=x,/ = 2)

p _y7
_Z |z = z2)

So,eachcase (Y =y, X =z, Z = z) in the population has its probability (non-
uniformly!) boosted by the factor 1/p(X =z|Z = z2).
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Example on Inverse Probability Weighing (IPW)

Simpson’s paradox: Drug that seems to help men and woman separately, but hurt

the general population

X =took drug,Y =recovered, Z = sex

Table 3.3 Joint probability distribution P(X, Y, Z) for the drug-

gender-recovery story of Chapter 1 (Table 1.1)

X Y Z % of population
Yes Yes Male 0.116
Yes Yes Female 0.274
Yes No Male 0.01

Yes No Female 0.101

No Yes Male 0.334

No Yes Female 0.079

No No Male 0.051

No No Female 0.036
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Example on Inverse Probability Weighing (IPW)

Condition on “X =Yes”:

Table 3.4 Conditional probability distribution P(Y, Z|X) for drug users
(X = yes) in the population of Table 3.3

X Y Z % of population
Yes Yes Male 0.232
Yes Yes Female 0.547
Yes No Male 0.02
Yes No Female 0.202
) . P(Y, Z, X )
Table is produced in two steps: P(Y,Z|X) = P(X)

1. Those with “X =No” are removed
2. Weights in final row are renormalised (so they add up to one) by multiplying

with the constant 1/ P(X = yes), computed by using “X = Yes” from 3.3:
P(X =yes) =0.116 + 0.274 + 0.01 + 0.101 = 0.501

Pearl’s Primer book, p73-74



Example on Inverse Probability Weighing (IPW)

Next, consider the population do(X = Yes):
1. Calculate the distribution of weights, i.e., according to Table 3.3:

(0.116 + 0.01)
P(X = ves|Z = Male) = — 024
(X = yes] ale) = 0116 £ 0.01 0334 + 0.051) 0.247

(0.274 + 0.101)
(0.274 + 0.101 + 0.079 + 0.036)

P(X = yes|Z = Female) = = (0.765

2. Multiply weights by 1/0.247 (Z = Male) and 1/0.765 (Z = Female), obtain:

Table 3.5 Probability distribution for the population of Table 3.3 under the
intervention do(X = Yes), determined via the inverse probability method

X Y Z % of population
Yes Yes Male 0.476
Yes Yes Female 0.357
Yes No Male 0.041
Yes No Female 0.132

We deduce: P(Y = yes|do(X = yes)) = 0.476 + 0.357 = 0.833

Pearl’s Primer book, p73-74



Remarks on Inverse Probability Weighing (IPW)

Remarks:
1. Redistribution of the probabilities is not uniform (cf. 3.5: Rows 1 and 2)

2. May lead to significant computational savings: Only need to estimate the
propensity score g(x, z) = p(X = x|Z = z) for the values Z = z that are
actually observed in the data, i.e., for at most as many Z as the sample size

If Z has many more values than the sample size, this can be a great help

3. Caution: The method of IPW to compute
p(Y = yldo(X = z))

is only valid when the set of variables Z satisfies the backdoor criterion.
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Mediation

A variable may cause another, directly or indirectly through a set me mediating
variables.

Example: Treatment decrease blood pressure, and through this process,

increases recovery. But treatment has a direct negative effect on recovery.
‘Overall, is treatment good or bad?’ (We did this in lecture 10)

‘How much of the effect is direct and how much indirect? Non-trivial!

Blood pressure

==

or Drug Outcome



Mediation: Example

Q: If and to what degree a company discriminates by gender (T) in hiring (Y).

(i) Direct discrimination based on gender (illegal)
(ii) Indirect: Gender affects hiring practices, e.g., could be that women are more/

ess likely to go in a particular field

To answer the question, we are focusing on (i), meaning we need to keep (ii)
steady and measure the remaining relationship between gender and hiring

‘With qualifications held constant, Qualification
any change hiring would have been
due to gender alone.

26 Gender Hiring



Mediation: Example

Q: If and to what degree a company discriminates by gender (T) in hiring (Y).

(i) Direct discrimination based on gender (illegal)
(ii) Indirect: Gender affects hiring practices, e.g., could be that women are more/

ess likely to go in a particular field

To answer the question, we are focusing on (i), meaning we need to keep (ii)
steady and measure the remaining relationship between gender and hiring

One way is to condition on the mediator, and see if: Qualification

p(Hired | Female, Highly qualified) = or !=
p(Hired | Male, Highly qualified) J

If not equal, then there is a direct effect of gender on hiring
o7 Gender Hiring



Mediation: Example

Complication: Suppose there is a confounder for the mediator X and outcomeY.

Individuals from higher income families are more likely to have gone to uni
and/or have more connection that would help them get hired.

Now, if we condition on qualification to get the direct effect, we have a collider!
T->X<-W->Y

Income Qualification

O

- Gender Hiring



Mediation: Example

Complication: Suppose there is a confounder for the mediator X and outcomeY.

Individuals from higher income families are more likely to have gone to uni
and/or have more connection that would help them get hired.

Now, if we condition on qualification to get the direct effect, we have a collider!
T->X<-W->Y

So we have to block that path ...
Income Qualification

O

29 Gender Hiring



Mediation: Example

Apply the do-operator on qualification.

In the hypothetical graph below, there are no spurious paths and only
the direct effect remains. Again, need to reduce the do-operators to usual
expression in terms of probabilities. We have:

Controlled Direct Effect (CDE):
p(Y = yldo(T =t),do(X = x)) — p(Y = y|do(T =t'),do(X = 1))

Income Qualification

O

20 Gender Hiring



Mediation: Example

Apply the do-operator on qualification.

In the hypothetical graph below, there are no spurious paths and only
the direct effect remains. Again, need to reduce the do-operators to usual
expression in terms of probabilities. We have:

Controlled Direct Effect (CDE):
p(Y = yldo(T =t),do(X = x)) — p(Y = y|do(T =t'),do(X = 1))

Income Qualification

Notice: Direct effect may differ for different values of
X, e.g., hiring practices may discriminate against
women in jobs requiring higher qualifications etc. @

31 Gender Hiring



Mediation: Example

Controlled Direct Effect (CDE):
p(Y = yldo(T =t),do(X = x)) — p(Y = y|do(T =t'),do(X = x))

There are no backdoor paths from T to Y, hence the above is equal to:
p(Y =y|T' =t,do(X =x)) — p(Y =y|T =t',do(X = 1))

There are 2 back-door paths from X to Y in the original graph:
1) through gender T, which is blocked by T
2) Through income W, so we conditionon W Income Qualification

Z(p(Y:y\th,X::U,W:w)—p(Y:y|T:t’,X:x,W:w))p(W:w) f

- Gender Hiring



Mediation

In general: the CDE of T on Y, meditated by Xis identifiable if:
1) There exits a set S1of variables that blocks all back-door paths from Xto Y

2) There exits a set Sz of variables that blocks all back-door paths from T to Y, after
deleting all arrows entering X.

Remark: (2) is not necessary in randomised control trials
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